This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 28-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppssof1.s | ⊢ ( 𝜑 → ( 𝐴 supp 𝑌 ) ⊆ 𝐿 ) | |
| suppssof1.o | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑅 ) → ( 𝑌 𝑂 𝑣 ) = 𝑍 ) | ||
| suppssof1.a | ⊢ ( 𝜑 → 𝐴 : 𝐷 ⟶ 𝑉 ) | ||
| suppssof1.b | ⊢ ( 𝜑 → 𝐵 : 𝐷 ⟶ 𝑅 ) | ||
| suppssof1.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | ||
| suppssof1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| Assertion | suppssof1 | ⊢ ( 𝜑 → ( ( 𝐴 ∘f 𝑂 𝐵 ) supp 𝑍 ) ⊆ 𝐿 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssof1.s | ⊢ ( 𝜑 → ( 𝐴 supp 𝑌 ) ⊆ 𝐿 ) | |
| 2 | suppssof1.o | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑅 ) → ( 𝑌 𝑂 𝑣 ) = 𝑍 ) | |
| 3 | suppssof1.a | ⊢ ( 𝜑 → 𝐴 : 𝐷 ⟶ 𝑉 ) | |
| 4 | suppssof1.b | ⊢ ( 𝜑 → 𝐵 : 𝐷 ⟶ 𝑅 ) | |
| 5 | suppssof1.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) | |
| 6 | suppssof1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 7 | 3 | ffnd | ⊢ ( 𝜑 → 𝐴 Fn 𝐷 ) |
| 8 | 4 | ffnd | ⊢ ( 𝜑 → 𝐵 Fn 𝐷 ) |
| 9 | inidm | ⊢ ( 𝐷 ∩ 𝐷 ) = 𝐷 | |
| 10 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) | |
| 11 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐵 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) | |
| 12 | 7 8 5 5 9 10 11 | offval | ⊢ ( 𝜑 → ( 𝐴 ∘f 𝑂 𝐵 ) = ( 𝑥 ∈ 𝐷 ↦ ( ( 𝐴 ‘ 𝑥 ) 𝑂 ( 𝐵 ‘ 𝑥 ) ) ) ) |
| 13 | 12 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 ∘f 𝑂 𝐵 ) supp 𝑍 ) = ( ( 𝑥 ∈ 𝐷 ↦ ( ( 𝐴 ‘ 𝑥 ) 𝑂 ( 𝐵 ‘ 𝑥 ) ) ) supp 𝑍 ) ) |
| 14 | 3 | feqmptd | ⊢ ( 𝜑 → 𝐴 = ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 ‘ 𝑥 ) ) ) |
| 15 | 14 | oveq1d | ⊢ ( 𝜑 → ( 𝐴 supp 𝑌 ) = ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 ‘ 𝑥 ) ) supp 𝑌 ) ) |
| 16 | 15 1 | eqsstrrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 ‘ 𝑥 ) ) supp 𝑌 ) ⊆ 𝐿 ) |
| 17 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐴 ‘ 𝑥 ) ∈ V ) | |
| 18 | 4 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐵 ‘ 𝑥 ) ∈ 𝑅 ) |
| 19 | 16 2 17 18 6 | suppssov1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( ( 𝐴 ‘ 𝑥 ) 𝑂 ( 𝐵 ‘ 𝑥 ) ) ) supp 𝑍 ) ⊆ 𝐿 ) |
| 20 | 13 19 | eqsstrd | ⊢ ( 𝜑 → ( ( 𝐴 ∘f 𝑂 𝐵 ) supp 𝑍 ) ⊆ 𝐿 ) |