This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The analogue of the statement " 0 <_ G <_ F implies 0 <_ F - G <_ F " for finite bags. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psrbag.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| Assertion | psrbagcon | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( ( F oF - G ) e. D /\ ( F oF - G ) oR <_ F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 2 | 1 | psrbagf | |- ( F e. D -> F : I --> NN0 ) |
| 3 | 2 | ffnd | |- ( F e. D -> F Fn I ) |
| 4 | 3 | 3ad2ant1 | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> F Fn I ) |
| 5 | simp2 | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> G : I --> NN0 ) |
|
| 6 | 5 | ffnd | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> G Fn I ) |
| 7 | id | |- ( F e. D -> F e. D ) |
|
| 8 | 7 3 | fndmexd | |- ( F e. D -> I e. _V ) |
| 9 | 8 | 3ad2ant1 | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> I e. _V ) |
| 10 | inidm | |- ( I i^i I ) = I |
|
| 11 | 4 6 9 9 10 | offn | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( F oF - G ) Fn I ) |
| 12 | eqidd | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. I ) -> ( F ` x ) = ( F ` x ) ) |
|
| 13 | eqidd | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. I ) -> ( G ` x ) = ( G ` x ) ) |
|
| 14 | 4 6 9 9 10 12 13 | ofval | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. I ) -> ( ( F oF - G ) ` x ) = ( ( F ` x ) - ( G ` x ) ) ) |
| 15 | simp3 | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> G oR <_ F ) |
|
| 16 | 6 4 9 9 10 13 12 | ofrfval | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( G oR <_ F <-> A. x e. I ( G ` x ) <_ ( F ` x ) ) ) |
| 17 | 15 16 | mpbid | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> A. x e. I ( G ` x ) <_ ( F ` x ) ) |
| 18 | 17 | r19.21bi | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. I ) -> ( G ` x ) <_ ( F ` x ) ) |
| 19 | 5 | ffvelcdmda | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. I ) -> ( G ` x ) e. NN0 ) |
| 20 | 2 | 3ad2ant1 | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> F : I --> NN0 ) |
| 21 | 20 | ffvelcdmda | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. I ) -> ( F ` x ) e. NN0 ) |
| 22 | nn0sub | |- ( ( ( G ` x ) e. NN0 /\ ( F ` x ) e. NN0 ) -> ( ( G ` x ) <_ ( F ` x ) <-> ( ( F ` x ) - ( G ` x ) ) e. NN0 ) ) |
|
| 23 | 19 21 22 | syl2anc | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. I ) -> ( ( G ` x ) <_ ( F ` x ) <-> ( ( F ` x ) - ( G ` x ) ) e. NN0 ) ) |
| 24 | 18 23 | mpbid | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. I ) -> ( ( F ` x ) - ( G ` x ) ) e. NN0 ) |
| 25 | 14 24 | eqeltrd | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. I ) -> ( ( F oF - G ) ` x ) e. NN0 ) |
| 26 | 25 | ralrimiva | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> A. x e. I ( ( F oF - G ) ` x ) e. NN0 ) |
| 27 | ffnfv | |- ( ( F oF - G ) : I --> NN0 <-> ( ( F oF - G ) Fn I /\ A. x e. I ( ( F oF - G ) ` x ) e. NN0 ) ) |
|
| 28 | 11 26 27 | sylanbrc | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( F oF - G ) : I --> NN0 ) |
| 29 | simp1 | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> F e. D ) |
|
| 30 | 1 | psrbag | |- ( I e. _V -> ( F e. D <-> ( F : I --> NN0 /\ ( `' F " NN ) e. Fin ) ) ) |
| 31 | 9 30 | syl | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( F e. D <-> ( F : I --> NN0 /\ ( `' F " NN ) e. Fin ) ) ) |
| 32 | 29 31 | mpbid | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( F : I --> NN0 /\ ( `' F " NN ) e. Fin ) ) |
| 33 | 32 | simprd | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( `' F " NN ) e. Fin ) |
| 34 | 19 | nn0ge0d | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. I ) -> 0 <_ ( G ` x ) ) |
| 35 | 21 | nn0red | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. I ) -> ( F ` x ) e. RR ) |
| 36 | 19 | nn0red | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. I ) -> ( G ` x ) e. RR ) |
| 37 | 35 36 | subge02d | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. I ) -> ( 0 <_ ( G ` x ) <-> ( ( F ` x ) - ( G ` x ) ) <_ ( F ` x ) ) ) |
| 38 | 34 37 | mpbid | |- ( ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) /\ x e. I ) -> ( ( F ` x ) - ( G ` x ) ) <_ ( F ` x ) ) |
| 39 | 38 | ralrimiva | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> A. x e. I ( ( F ` x ) - ( G ` x ) ) <_ ( F ` x ) ) |
| 40 | 11 4 9 9 10 14 12 | ofrfval | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( ( F oF - G ) oR <_ F <-> A. x e. I ( ( F ` x ) - ( G ` x ) ) <_ ( F ` x ) ) ) |
| 41 | 39 40 | mpbird | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( F oF - G ) oR <_ F ) |
| 42 | 1 | psrbaglesupp | |- ( ( F e. D /\ ( F oF - G ) : I --> NN0 /\ ( F oF - G ) oR <_ F ) -> ( `' ( F oF - G ) " NN ) C_ ( `' F " NN ) ) |
| 43 | 29 28 41 42 | syl3anc | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( `' ( F oF - G ) " NN ) C_ ( `' F " NN ) ) |
| 44 | 33 43 | ssfid | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( `' ( F oF - G ) " NN ) e. Fin ) |
| 45 | 1 | psrbag | |- ( I e. _V -> ( ( F oF - G ) e. D <-> ( ( F oF - G ) : I --> NN0 /\ ( `' ( F oF - G ) " NN ) e. Fin ) ) ) |
| 46 | 9 45 | syl | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( ( F oF - G ) e. D <-> ( ( F oF - G ) : I --> NN0 /\ ( `' ( F oF - G ) " NN ) e. Fin ) ) ) |
| 47 | 28 44 46 | mpbir2and | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( F oF - G ) e. D ) |
| 48 | 47 41 | jca | |- ( ( F e. D /\ G : I --> NN0 /\ G oR <_ F ) -> ( ( F oF - G ) e. D /\ ( F oF - G ) oR <_ F ) ) |