This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All transpositions are odd. (Contributed by Stefan O'Rear, 29-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| psgnval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | ||
| psgnval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| Assertion | psgnpmtr | ⊢ ( 𝑃 ∈ 𝑇 → ( 𝑁 ‘ 𝑃 ) = - 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgnval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 3 | psgnval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | 2 1 4 | symgtrf | ⊢ 𝑇 ⊆ ( Base ‘ 𝐺 ) |
| 6 | 5 | sseli | ⊢ ( 𝑃 ∈ 𝑇 → 𝑃 ∈ ( Base ‘ 𝐺 ) ) |
| 7 | 4 | gsumws1 | ⊢ ( 𝑃 ∈ ( Base ‘ 𝐺 ) → ( 𝐺 Σg 〈“ 𝑃 ”〉 ) = 𝑃 ) |
| 8 | 6 7 | syl | ⊢ ( 𝑃 ∈ 𝑇 → ( 𝐺 Σg 〈“ 𝑃 ”〉 ) = 𝑃 ) |
| 9 | 8 | fveq2d | ⊢ ( 𝑃 ∈ 𝑇 → ( 𝑁 ‘ ( 𝐺 Σg 〈“ 𝑃 ”〉 ) ) = ( 𝑁 ‘ 𝑃 ) ) |
| 10 | 1 4 | elbasfv | ⊢ ( 𝑃 ∈ ( Base ‘ 𝐺 ) → 𝐷 ∈ V ) |
| 11 | 6 10 | syl | ⊢ ( 𝑃 ∈ 𝑇 → 𝐷 ∈ V ) |
| 12 | s1cl | ⊢ ( 𝑃 ∈ 𝑇 → 〈“ 𝑃 ”〉 ∈ Word 𝑇 ) | |
| 13 | 1 2 3 | psgnvalii | ⊢ ( ( 𝐷 ∈ V ∧ 〈“ 𝑃 ”〉 ∈ Word 𝑇 ) → ( 𝑁 ‘ ( 𝐺 Σg 〈“ 𝑃 ”〉 ) ) = ( - 1 ↑ ( ♯ ‘ 〈“ 𝑃 ”〉 ) ) ) |
| 14 | 11 12 13 | syl2anc | ⊢ ( 𝑃 ∈ 𝑇 → ( 𝑁 ‘ ( 𝐺 Σg 〈“ 𝑃 ”〉 ) ) = ( - 1 ↑ ( ♯ ‘ 〈“ 𝑃 ”〉 ) ) ) |
| 15 | s1len | ⊢ ( ♯ ‘ 〈“ 𝑃 ”〉 ) = 1 | |
| 16 | 15 | oveq2i | ⊢ ( - 1 ↑ ( ♯ ‘ 〈“ 𝑃 ”〉 ) ) = ( - 1 ↑ 1 ) |
| 17 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 18 | exp1 | ⊢ ( - 1 ∈ ℂ → ( - 1 ↑ 1 ) = - 1 ) | |
| 19 | 17 18 | ax-mp | ⊢ ( - 1 ↑ 1 ) = - 1 |
| 20 | 16 19 | eqtri | ⊢ ( - 1 ↑ ( ♯ ‘ 〈“ 𝑃 ”〉 ) ) = - 1 |
| 21 | 14 20 | eqtrdi | ⊢ ( 𝑃 ∈ 𝑇 → ( 𝑁 ‘ ( 𝐺 Σg 〈“ 𝑃 ”〉 ) ) = - 1 ) |
| 22 | 9 21 | eqtr3d | ⊢ ( 𝑃 ∈ 𝑇 → ( 𝑁 ‘ 𝑃 ) = - 1 ) |