This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence of transpositions describes a finitary permutation. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| psgnval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | ||
| psgnval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| Assertion | psgneldm2i | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝐺 Σg 𝑊 ) ∈ dom 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnval.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgnval.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 3 | psgnval.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 4 | eqid | ⊢ ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑊 ) | |
| 5 | oveq2 | ⊢ ( 𝑤 = 𝑊 → ( 𝐺 Σg 𝑤 ) = ( 𝐺 Σg 𝑊 ) ) | |
| 6 | 5 | rspceeqv | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑊 ) ) → ∃ 𝑤 ∈ Word 𝑇 ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ) |
| 7 | 4 6 | mpan2 | ⊢ ( 𝑊 ∈ Word 𝑇 → ∃ 𝑤 ∈ Word 𝑇 ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ) |
| 8 | 1 2 3 | psgneldm2 | ⊢ ( 𝐷 ∈ 𝑉 → ( ( 𝐺 Σg 𝑊 ) ∈ dom 𝑁 ↔ ∃ 𝑤 ∈ Word 𝑇 ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ) ) |
| 9 | 8 | biimpar | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ ∃ 𝑤 ∈ Word 𝑇 ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg 𝑤 ) ) → ( 𝐺 Σg 𝑊 ) ∈ dom 𝑁 ) |
| 10 | 7 9 | sylan2 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝑇 ) → ( 𝐺 Σg 𝑊 ) ∈ dom 𝑁 ) |