This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set not moving the special element. (Contributed by AV, 31-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrdifel.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| pmtrdifel.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | ||
| Assertion | pmtrdifwrdel2 | ⊢ ( 𝐾 ∈ 𝑁 → ∀ 𝑤 ∈ Word 𝑇 ∃ 𝑢 ∈ Word 𝑅 ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑢 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 2 | pmtrdifel.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | |
| 3 | fveq2 | ⊢ ( 𝑗 = 𝑛 → ( 𝑤 ‘ 𝑗 ) = ( 𝑤 ‘ 𝑛 ) ) | |
| 4 | 3 | difeq1d | ⊢ ( 𝑗 = 𝑛 → ( ( 𝑤 ‘ 𝑗 ) ∖ I ) = ( ( 𝑤 ‘ 𝑛 ) ∖ I ) ) |
| 5 | 4 | dmeqd | ⊢ ( 𝑗 = 𝑛 → dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) = dom ( ( 𝑤 ‘ 𝑛 ) ∖ I ) ) |
| 6 | 5 | fveq2d | ⊢ ( 𝑗 = 𝑛 → ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑛 ) ∖ I ) ) ) |
| 7 | 6 | cbvmptv | ⊢ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) = ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑛 ) ∖ I ) ) ) |
| 8 | 1 2 7 | pmtrdifwrdellem1 | ⊢ ( 𝑤 ∈ Word 𝑇 → ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ∈ Word 𝑅 ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) → ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ∈ Word 𝑅 ) |
| 10 | 1 2 7 | pmtrdifwrdellem2 | ⊢ ( 𝑤 ∈ Word 𝑇 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ) |
| 12 | 1 2 7 | pmtrdifwrdel2lem1 | ⊢ ( ( 𝑤 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) |
| 13 | 12 | ancoms | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) |
| 14 | 1 2 7 | pmtrdifwrdellem3 | ⊢ ( 𝑤 ∈ Word 𝑇 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
| 16 | r19.26 | ⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) | |
| 17 | 13 15 16 | sylanbrc | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) |
| 18 | fveq2 | ⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ♯ ‘ 𝑢 ) = ( ♯ ‘ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ) | |
| 19 | 18 | eqeq2d | ⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑢 ) ↔ ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ) ) |
| 20 | fveq1 | ⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( 𝑢 ‘ 𝑖 ) = ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ) | |
| 21 | 20 | fveq1d | ⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) ) |
| 22 | 21 | eqeq1d | ⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 23 | 20 | fveq1d | ⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) |
| 24 | 23 | eqeq2d | ⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ↔ ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) |
| 25 | 24 | ralbidv | ⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) |
| 26 | 22 25 | anbi12d | ⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ) ↔ ( ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) |
| 27 | 26 | ralbidv | ⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) |
| 28 | 19 27 | anbi12d | ⊢ ( 𝑢 = ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) → ( ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑢 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ↔ ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) ) |
| 29 | 28 | rspcev | ⊢ ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ∈ Word 𝑅 ∧ ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑤 ‘ 𝑗 ) ∖ I ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) → ∃ 𝑢 ∈ Word 𝑅 ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑢 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) |
| 30 | 9 11 17 29 | syl12anc | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝑤 ∈ Word 𝑇 ) → ∃ 𝑢 ∈ Word 𝑅 ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑢 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) |
| 31 | 30 | ralrimiva | ⊢ ( 𝐾 ∈ 𝑁 → ∀ 𝑤 ∈ Word 𝑇 ∃ 𝑢 ∈ Word 𝑅 ( ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑢 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ∧ ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) |