This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prter1 and prtex . (Contributed by Rodolfo Medina, 13-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prtlem15 | ⊢ ( Prt 𝐴 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐴 ( 𝑢 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anabs7 | ⊢ ( ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦 ) ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ) ) ↔ ( ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦 ) ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ) ) | |
| 2 | an43 | ⊢ ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) ↔ ( ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦 ) ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ) ) | |
| 3 | 2 | anbi2i | ⊢ ( ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) ) ↔ ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦 ) ∧ ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ) ) ) |
| 4 | 1 3 2 | 3bitr4ri | ⊢ ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) ↔ ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) ) ) |
| 5 | prtlem14 | ⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 6 | an3 | ⊢ ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦 ) ) | |
| 7 | elequ2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑣 ∈ 𝑥 ↔ 𝑣 ∈ 𝑦 ) ) | |
| 8 | 7 | anbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ↔ ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦 ) ) ) |
| 9 | 6 8 | imbitrrid | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ) ) |
| 10 | 5 9 | syl8 | ⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) → ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ) ) ) ) |
| 11 | 10 | imp4a | ⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝑤 ∈ 𝑥 ∧ 𝑤 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) ) → ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ) ) ) |
| 12 | 4 11 | syl7bi | ⊢ ( Prt 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ) ) ) |
| 13 | 12 | expdimp | ⊢ ( ( Prt 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐴 → ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ) ) ) |
| 14 | 13 | rexlimdv | ⊢ ( ( Prt 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ) ) |
| 15 | 14 | reximdva | ⊢ ( Prt 𝐴 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ) ) |
| 16 | elequ2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑢 ∈ 𝑥 ↔ 𝑢 ∈ 𝑧 ) ) | |
| 17 | elequ2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑣 ∈ 𝑥 ↔ 𝑣 ∈ 𝑧 ) ) | |
| 18 | 16 17 | anbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ↔ ( 𝑢 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧 ) ) ) |
| 19 | 18 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ↔ ∃ 𝑧 ∈ 𝐴 ( 𝑢 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧 ) ) |
| 20 | 15 19 | imbitrdi | ⊢ ( Prt 𝐴 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑢 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑤 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ∃ 𝑧 ∈ 𝐴 ( 𝑢 ∈ 𝑧 ∧ 𝑣 ∈ 𝑧 ) ) ) |