This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every partition generates an equivalence relation. (Contributed by Rodolfo Medina, 13-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prtlem18.1 | |- .~ = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } |
|
| Assertion | prter1 | |- ( Prt A -> .~ Er U. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prtlem18.1 | |- .~ = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } |
|
| 2 | 1 | relopabiv | |- Rel .~ |
| 3 | 2 | a1i | |- ( Prt A -> Rel .~ ) |
| 4 | 1 | prtlem16 | |- dom .~ = U. A |
| 5 | 4 | a1i | |- ( Prt A -> dom .~ = U. A ) |
| 6 | prtlem15 | |- ( Prt A -> ( E. v e. A E. q e. A ( ( z e. v /\ w e. v ) /\ ( w e. q /\ p e. q ) ) -> E. r e. A ( z e. r /\ p e. r ) ) ) |
|
| 7 | 1 | prtlem13 | |- ( z .~ w <-> E. v e. A ( z e. v /\ w e. v ) ) |
| 8 | 1 | prtlem13 | |- ( w .~ p <-> E. q e. A ( w e. q /\ p e. q ) ) |
| 9 | 7 8 | anbi12i | |- ( ( z .~ w /\ w .~ p ) <-> ( E. v e. A ( z e. v /\ w e. v ) /\ E. q e. A ( w e. q /\ p e. q ) ) ) |
| 10 | reeanv | |- ( E. v e. A E. q e. A ( ( z e. v /\ w e. v ) /\ ( w e. q /\ p e. q ) ) <-> ( E. v e. A ( z e. v /\ w e. v ) /\ E. q e. A ( w e. q /\ p e. q ) ) ) |
|
| 11 | 9 10 | bitr4i | |- ( ( z .~ w /\ w .~ p ) <-> E. v e. A E. q e. A ( ( z e. v /\ w e. v ) /\ ( w e. q /\ p e. q ) ) ) |
| 12 | 1 | prtlem13 | |- ( z .~ p <-> E. r e. A ( z e. r /\ p e. r ) ) |
| 13 | 6 11 12 | 3imtr4g | |- ( Prt A -> ( ( z .~ w /\ w .~ p ) -> z .~ p ) ) |
| 14 | pm3.22 | |- ( ( z e. v /\ w e. v ) -> ( w e. v /\ z e. v ) ) |
|
| 15 | 14 | reximi | |- ( E. v e. A ( z e. v /\ w e. v ) -> E. v e. A ( w e. v /\ z e. v ) ) |
| 16 | 1 | prtlem13 | |- ( w .~ z <-> E. v e. A ( w e. v /\ z e. v ) ) |
| 17 | 15 7 16 | 3imtr4i | |- ( z .~ w -> w .~ z ) |
| 18 | 13 17 | jctil | |- ( Prt A -> ( ( z .~ w -> w .~ z ) /\ ( ( z .~ w /\ w .~ p ) -> z .~ p ) ) ) |
| 19 | 18 | alrimivv | |- ( Prt A -> A. w A. p ( ( z .~ w -> w .~ z ) /\ ( ( z .~ w /\ w .~ p ) -> z .~ p ) ) ) |
| 20 | 19 | alrimiv | |- ( Prt A -> A. z A. w A. p ( ( z .~ w -> w .~ z ) /\ ( ( z .~ w /\ w .~ p ) -> z .~ p ) ) ) |
| 21 | dfer2 | |- ( .~ Er U. A <-> ( Rel .~ /\ dom .~ = U. A /\ A. z A. w A. p ( ( z .~ w -> w .~ z ) /\ ( ( z .~ w /\ w .~ p ) -> z .~ p ) ) ) ) |
|
| 22 | 3 5 20 21 | syl3anbrc | |- ( Prt A -> .~ Er U. A ) |