This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of two unordered pairs. (Contributed by NM, 17-Oct-1996) (Revised by AV, 9-Dec-2018) (Revised by AV, 12-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prel12g | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( { A , B } = { C , D } <-> ( A e. { C , D } /\ B e. { C , D } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq12nebg | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
|
| 2 | prid1g | |- ( A e. V -> A e. { A , D } ) |
|
| 3 | 2 | 3ad2ant1 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> A e. { A , D } ) |
| 4 | 3 | adantr | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ A = C ) -> A e. { A , D } ) |
| 5 | preq1 | |- ( A = C -> { A , D } = { C , D } ) |
|
| 6 | 5 | adantl | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ A = C ) -> { A , D } = { C , D } ) |
| 7 | 4 6 | eleqtrd | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ A = C ) -> A e. { C , D } ) |
| 8 | 7 | ex | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( A = C -> A e. { C , D } ) ) |
| 9 | prid2g | |- ( B e. W -> B e. { C , B } ) |
|
| 10 | 9 | 3ad2ant2 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> B e. { C , B } ) |
| 11 | preq2 | |- ( B = D -> { C , B } = { C , D } ) |
|
| 12 | 11 | eleq2d | |- ( B = D -> ( B e. { C , B } <-> B e. { C , D } ) ) |
| 13 | 10 12 | syl5ibcom | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( B = D -> B e. { C , D } ) ) |
| 14 | 8 13 | anim12d | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( A = C /\ B = D ) -> ( A e. { C , D } /\ B e. { C , D } ) ) ) |
| 15 | prid2g | |- ( A e. V -> A e. { C , A } ) |
|
| 16 | 15 | 3ad2ant1 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> A e. { C , A } ) |
| 17 | preq2 | |- ( A = D -> { C , A } = { C , D } ) |
|
| 18 | 17 | eleq2d | |- ( A = D -> ( A e. { C , A } <-> A e. { C , D } ) ) |
| 19 | 16 18 | syl5ibcom | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( A = D -> A e. { C , D } ) ) |
| 20 | prid1g | |- ( B e. W -> B e. { B , D } ) |
|
| 21 | 20 | 3ad2ant2 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> B e. { B , D } ) |
| 22 | preq1 | |- ( B = C -> { B , D } = { C , D } ) |
|
| 23 | 22 | eleq2d | |- ( B = C -> ( B e. { B , D } <-> B e. { C , D } ) ) |
| 24 | 21 23 | syl5ibcom | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( B = C -> B e. { C , D } ) ) |
| 25 | 19 24 | anim12d | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( A = D /\ B = C ) -> ( A e. { C , D } /\ B e. { C , D } ) ) ) |
| 26 | 14 25 | jaod | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) -> ( A e. { C , D } /\ B e. { C , D } ) ) ) |
| 27 | elprg | |- ( A e. V -> ( A e. { C , D } <-> ( A = C \/ A = D ) ) ) |
|
| 28 | 27 | 3ad2ant1 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( A e. { C , D } <-> ( A = C \/ A = D ) ) ) |
| 29 | elprg | |- ( B e. W -> ( B e. { C , D } <-> ( B = C \/ B = D ) ) ) |
|
| 30 | 29 | 3ad2ant2 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( B e. { C , D } <-> ( B = C \/ B = D ) ) ) |
| 31 | 28 30 | anbi12d | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( A e. { C , D } /\ B e. { C , D } ) <-> ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) ) ) |
| 32 | eqtr3 | |- ( ( A = C /\ B = C ) -> A = B ) |
|
| 33 | eqneqall | |- ( A = B -> ( A =/= B -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
|
| 34 | 32 33 | syl | |- ( ( A = C /\ B = C ) -> ( A =/= B -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
| 35 | olc | |- ( ( A = D /\ B = C ) -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) |
|
| 36 | 35 | a1d | |- ( ( A = D /\ B = C ) -> ( A =/= B -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
| 37 | orc | |- ( ( A = C /\ B = D ) -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) |
|
| 38 | 37 | a1d | |- ( ( A = C /\ B = D ) -> ( A =/= B -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
| 39 | eqtr3 | |- ( ( A = D /\ B = D ) -> A = B ) |
|
| 40 | 39 33 | syl | |- ( ( A = D /\ B = D ) -> ( A =/= B -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
| 41 | 34 36 38 40 | ccase | |- ( ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) -> ( A =/= B -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
| 42 | 41 | com12 | |- ( A =/= B -> ( ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
| 43 | 42 | 3ad2ant3 | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
| 44 | 31 43 | sylbid | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( A e. { C , D } /\ B e. { C , D } ) -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
| 45 | 26 44 | impbid | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) <-> ( A e. { C , D } /\ B e. { C , D } ) ) ) |
| 46 | 1 45 | bitrd | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( { A , B } = { C , D } <-> ( A e. { C , D } /\ B e. { C , D } ) ) ) |