This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered pair has the ordered pair property (compare opth ) under certain conditions. Variant of opthpr in closed form. (Contributed by AV, 13-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opthprneg | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq12bg | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) | |
| 2 | 1 | adantlr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 3 | idd | ⊢ ( 𝐴 ≠ 𝐷 → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) | |
| 4 | df-ne | ⊢ ( 𝐴 ≠ 𝐷 ↔ ¬ 𝐴 = 𝐷 ) | |
| 5 | pm2.21 | ⊢ ( ¬ 𝐴 = 𝐷 → ( 𝐴 = 𝐷 → ( 𝐵 = 𝐶 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) | |
| 6 | 4 5 | sylbi | ⊢ ( 𝐴 ≠ 𝐷 → ( 𝐴 = 𝐷 → ( 𝐵 = 𝐶 → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
| 7 | 6 | impd | ⊢ ( 𝐴 ≠ 𝐷 → ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 8 | 3 7 | jaod | ⊢ ( 𝐴 ≠ 𝐷 → ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 9 | orc | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) | |
| 10 | 8 9 | impbid1 | ⊢ ( 𝐴 ≠ 𝐷 → ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) → ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 12 | 11 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 13 | 2 12 | bitrd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 14 | 13 | expcom | ⊢ ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) → ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
| 15 | ianor | ⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ↔ ( ¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V ) ) | |
| 16 | simpl | ⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) → 𝐴 ≠ 𝐵 ) | |
| 17 | 16 | anim2i | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐴 ≠ 𝐵 ) ) |
| 18 | df-3an | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ↔ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐴 ≠ 𝐵 ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) |
| 20 | prneprprc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) | |
| 21 | 19 20 | sylan | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) ∧ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) |
| 22 | 21 | ancoms | ⊢ ( ( ¬ 𝐶 ∈ V ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) |
| 23 | eqneqall | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) | |
| 24 | 22 23 | syl5com | ⊢ ( ( ¬ 𝐶 ∈ V ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 25 | prneprprc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ ¬ 𝐷 ∈ V ) → { 𝐴 , 𝐵 } ≠ { 𝐷 , 𝐶 } ) | |
| 26 | 19 25 | sylan | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) ∧ ¬ 𝐷 ∈ V ) → { 𝐴 , 𝐵 } ≠ { 𝐷 , 𝐶 } ) |
| 27 | 26 | ancoms | ⊢ ( ( ¬ 𝐷 ∈ V ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) ) → { 𝐴 , 𝐵 } ≠ { 𝐷 , 𝐶 } ) |
| 28 | prcom | ⊢ { 𝐶 , 𝐷 } = { 𝐷 , 𝐶 } | |
| 29 | 28 | eqeq2i | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ { 𝐴 , 𝐵 } = { 𝐷 , 𝐶 } ) |
| 30 | eqneqall | ⊢ ( { 𝐴 , 𝐵 } = { 𝐷 , 𝐶 } → ( { 𝐴 , 𝐵 } ≠ { 𝐷 , 𝐶 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) | |
| 31 | 29 30 | sylbi | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( { 𝐴 , 𝐵 } ≠ { 𝐷 , 𝐶 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 32 | 27 31 | syl5com | ⊢ ( ( ¬ 𝐷 ∈ V ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 33 | 24 32 | jaoian | ⊢ ( ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V ) ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 34 | preq12 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) | |
| 35 | 33 34 | impbid1 | ⊢ ( ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V ) ∧ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 36 | 35 | ex | ⊢ ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V ) → ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
| 37 | 15 36 | sylbi | ⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) → ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) ) |
| 38 | 14 37 | pm2.61i | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |