This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality relationship for two proper unordered pairs. (Contributed by AV, 12-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | preq12nebg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) | |
| 2 | 1 | anim1i | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ) |
| 3 | 2 | ancoms | ⊢ ( ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) ) |
| 4 | preq12bg | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 6 | 5 | ex | ⊢ ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) ) |
| 7 | ianor | ⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ↔ ( ¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V ) ) | |
| 8 | prneprprc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) | |
| 9 | 8 | ancoms | ⊢ ( ( ¬ 𝐶 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } ) |
| 10 | eqneqall | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( { 𝐴 , 𝐵 } ≠ { 𝐶 , 𝐷 } → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) | |
| 11 | 9 10 | syl5com | ⊢ ( ( ¬ 𝐶 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 12 | prneprprc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ∧ ¬ 𝐷 ∈ V ) → { 𝐴 , 𝐵 } ≠ { 𝐷 , 𝐶 } ) | |
| 13 | 12 | ancoms | ⊢ ( ( ¬ 𝐷 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → { 𝐴 , 𝐵 } ≠ { 𝐷 , 𝐶 } ) |
| 14 | prcom | ⊢ { 𝐶 , 𝐷 } = { 𝐷 , 𝐶 } | |
| 15 | 14 | eqeq2i | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ { 𝐴 , 𝐵 } = { 𝐷 , 𝐶 } ) |
| 16 | eqneqall | ⊢ ( { 𝐴 , 𝐵 } = { 𝐷 , 𝐶 } → ( { 𝐴 , 𝐵 } ≠ { 𝐷 , 𝐶 } → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) | |
| 17 | 15 16 | sylbi | ⊢ ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( { 𝐴 , 𝐵 } ≠ { 𝐷 , 𝐶 } → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 18 | 13 17 | syl5com | ⊢ ( ( ¬ 𝐷 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 19 | 11 18 | jaoian | ⊢ ( ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } → ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 20 | preq12 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) | |
| 21 | preq12 | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐷 , 𝐶 } ) | |
| 22 | prcom | ⊢ { 𝐷 , 𝐶 } = { 𝐶 , 𝐷 } | |
| 23 | 21 22 | eqtrdi | ⊢ ( ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) |
| 24 | 20 23 | jaoi | ⊢ ( ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) → { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ) |
| 25 | 19 24 | impbid1 | ⊢ ( ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |
| 26 | 25 | ex | ⊢ ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) ) |
| 27 | 7 26 | sylbi | ⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) ) |
| 28 | 6 27 | pm2.61i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐶 , 𝐷 } ↔ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ∨ ( 𝐴 = 𝐷 ∧ 𝐵 = 𝐶 ) ) ) ) |