This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A product of non-unital rings is a non-unital ring. (Contributed by AV, 22-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsrngd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsrngd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsrngd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsrngd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Rng ) | ||
| Assertion | prdsrngd | ⊢ ( 𝜑 → 𝑌 ∈ Rng ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsrngd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsrngd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 3 | prdsrngd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsrngd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Rng ) | |
| 5 | rngabl | ⊢ ( 𝑥 ∈ Rng → 𝑥 ∈ Abel ) | |
| 6 | 5 | ssriv | ⊢ Rng ⊆ Abel |
| 7 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ Rng ∧ Rng ⊆ Abel ) → 𝑅 : 𝐼 ⟶ Abel ) | |
| 8 | 4 6 7 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Abel ) |
| 9 | 1 2 3 8 | prdsabld | ⊢ ( 𝜑 → 𝑌 ∈ Abel ) |
| 10 | eqid | ⊢ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) = ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) | |
| 11 | rngmgpf | ⊢ ( mulGrp ↾ Rng ) : Rng ⟶ Smgrp | |
| 12 | fco2 | ⊢ ( ( ( mulGrp ↾ Rng ) : Rng ⟶ Smgrp ∧ 𝑅 : 𝐼 ⟶ Rng ) → ( mulGrp ∘ 𝑅 ) : 𝐼 ⟶ Smgrp ) | |
| 13 | 11 4 12 | sylancr | ⊢ ( 𝜑 → ( mulGrp ∘ 𝑅 ) : 𝐼 ⟶ Smgrp ) |
| 14 | 10 2 3 13 | prdssgrpd | ⊢ ( 𝜑 → ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ∈ Smgrp ) |
| 15 | fvexd | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑌 ) ∈ V ) | |
| 16 | ovexd | ⊢ ( 𝜑 → ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ∈ V ) | |
| 17 | eqidd | ⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) | |
| 18 | eqid | ⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) | |
| 19 | 4 | ffnd | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 20 | 1 18 10 2 3 19 | prdsmgp | ⊢ ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) ) |
| 21 | 20 | simpld | ⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
| 22 | 20 | simprd | ⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
| 23 | 22 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) 𝑦 ) ) |
| 24 | 15 16 17 21 23 | sgrppropd | ⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑌 ) ∈ Smgrp ↔ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ∈ Smgrp ) ) |
| 25 | 14 24 | mpbird | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑌 ) ∈ Smgrp ) |
| 26 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ Rng ) |
| 27 | 26 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑤 ) ∈ Rng ) |
| 28 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 29 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ 𝑉 ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑆 ∈ 𝑉 ) |
| 31 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ 𝑊 ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 33 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 Fn 𝐼 ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 35 | simplr1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑥 ∈ ( Base ‘ 𝑌 ) ) | |
| 36 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑤 ∈ 𝐼 ) | |
| 37 | 1 28 30 32 34 35 36 | prdsbasprj | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) |
| 38 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑌 ) ) | |
| 39 | 38 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑦 ∈ ( Base ‘ 𝑌 ) ) |
| 40 | 1 28 30 32 34 39 36 | prdsbasprj | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) |
| 41 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑌 ) ) | |
| 42 | 41 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑧 ∈ ( Base ‘ 𝑌 ) ) |
| 43 | 1 28 30 32 34 42 36 | prdsbasprj | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( 𝑧 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) |
| 44 | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) | |
| 45 | eqid | ⊢ ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) | |
| 46 | eqid | ⊢ ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) = ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) | |
| 47 | 44 45 46 | rngdi | ⊢ ( ( ( 𝑅 ‘ 𝑤 ) ∈ Rng ∧ ( ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ∧ ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ∧ ( 𝑧 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) ) → ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 48 | 27 37 40 43 47 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 49 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 50 | 1 28 30 32 34 39 42 49 36 | prdsplusgfval | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) = ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) |
| 51 | 50 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) = ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 52 | eqid | ⊢ ( .r ‘ 𝑌 ) = ( .r ‘ 𝑌 ) | |
| 53 | 1 28 30 32 34 35 39 52 36 | prdsmulrfval | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) = ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ) |
| 54 | 1 28 30 32 34 35 42 52 36 | prdsmulrfval | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) = ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) |
| 55 | 53 54 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 56 | 48 51 55 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) = ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) |
| 57 | 56 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑤 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
| 58 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑌 ) ) | |
| 59 | rnggrp | ⊢ ( 𝑥 ∈ Rng → 𝑥 ∈ Grp ) | |
| 60 | 59 | grpmndd | ⊢ ( 𝑥 ∈ Rng → 𝑥 ∈ Mnd ) |
| 61 | 60 | ssriv | ⊢ Rng ⊆ Mnd |
| 62 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ Rng ∧ Rng ⊆ Mnd ) → 𝑅 : 𝐼 ⟶ Mnd ) | |
| 63 | 4 61 62 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) |
| 64 | 63 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ Mnd ) |
| 65 | 1 28 49 29 31 64 38 41 | prdsplusgcl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ∈ ( Base ‘ 𝑌 ) ) |
| 66 | 1 28 29 31 33 58 65 52 | prdsmulrval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
| 67 | 1 28 52 29 31 26 58 38 | prdsmulrngcl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ∈ ( Base ‘ 𝑌 ) ) |
| 68 | 1 28 52 29 31 26 58 41 | prdsmulrngcl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ∈ ( Base ‘ 𝑌 ) ) |
| 69 | 1 28 29 31 33 67 68 49 | prdsplusgval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
| 70 | 57 66 69 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) ) |
| 71 | 44 45 46 | rngdir | ⊢ ( ( ( 𝑅 ‘ 𝑤 ) ∈ Rng ∧ ( ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ∧ ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ∧ ( 𝑧 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) ) → ( ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 72 | 27 37 40 43 71 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 73 | 1 28 30 32 34 35 39 49 36 | prdsplusgfval | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) = ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ) |
| 74 | 73 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) |
| 75 | 1 28 30 32 34 39 42 52 36 | prdsmulrfval | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) = ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) |
| 76 | 54 75 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 77 | 72 74 76 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) = ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) |
| 78 | 77 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
| 79 | 1 28 49 29 31 64 58 38 | prdsplusgcl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ∈ ( Base ‘ 𝑌 ) ) |
| 80 | 1 28 29 31 33 79 41 52 | prdsmulrval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 81 | 1 28 52 29 31 26 38 41 | prdsmulrngcl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ∈ ( Base ‘ 𝑌 ) ) |
| 82 | 1 28 29 31 33 68 81 49 | prdsplusgval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
| 83 | 78 80 82 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) |
| 84 | 70 83 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) ) |
| 85 | 84 | ralrimivvva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑌 ) ∀ 𝑦 ∈ ( Base ‘ 𝑌 ) ∀ 𝑧 ∈ ( Base ‘ 𝑌 ) ( ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) ) |
| 86 | 28 18 49 52 | isrng | ⊢ ( 𝑌 ∈ Rng ↔ ( 𝑌 ∈ Abel ∧ ( mulGrp ‘ 𝑌 ) ∈ Smgrp ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑌 ) ∀ 𝑦 ∈ ( Base ‘ 𝑌 ) ∀ 𝑧 ∈ ( Base ‘ 𝑌 ) ( ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) ) ) |
| 87 | 9 25 85 86 | syl3anbrc | ⊢ ( 𝜑 → 𝑌 ∈ Rng ) |