This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a family of Abelian groups is an Abelian group. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdscmnd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdscmnd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdscmnd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsgabld.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Abel ) | ||
| Assertion | prdsabld | ⊢ ( 𝜑 → 𝑌 ∈ Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdscmnd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdscmnd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 3 | prdscmnd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsgabld.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Abel ) | |
| 5 | ablgrp | ⊢ ( 𝑎 ∈ Abel → 𝑎 ∈ Grp ) | |
| 6 | 5 | ssriv | ⊢ Abel ⊆ Grp |
| 7 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ Abel ∧ Abel ⊆ Grp ) → 𝑅 : 𝐼 ⟶ Grp ) | |
| 8 | 4 6 7 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) |
| 9 | 1 2 3 8 | prdsgrpd | ⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
| 10 | ablcmn | ⊢ ( 𝑎 ∈ Abel → 𝑎 ∈ CMnd ) | |
| 11 | 10 | ssriv | ⊢ Abel ⊆ CMnd |
| 12 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ Abel ∧ Abel ⊆ CMnd ) → 𝑅 : 𝐼 ⟶ CMnd ) | |
| 13 | 4 11 12 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ CMnd ) |
| 14 | 1 2 3 13 | prdscmnd | ⊢ ( 𝜑 → 𝑌 ∈ CMnd ) |
| 15 | isabl | ⊢ ( 𝑌 ∈ Abel ↔ ( 𝑌 ∈ Grp ∧ 𝑌 ∈ CMnd ) ) | |
| 16 | 9 14 15 | sylanbrc | ⊢ ( 𝜑 → 𝑌 ∈ Abel ) |