This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of identity in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsplusgcl.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsplusgcl.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsplusgcl.p | ⊢ + = ( +g ‘ 𝑌 ) | ||
| prdsplusgcl.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsplusgcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsplusgcl.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) | ||
| prdsidlem.z | ⊢ 0 = ( 0g ∘ 𝑅 ) | ||
| Assertion | prdsidlem | ⊢ ( 𝜑 → ( 0 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsplusgcl.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsplusgcl.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsplusgcl.p | ⊢ + = ( +g ‘ 𝑌 ) | |
| 4 | prdsplusgcl.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 5 | prdsplusgcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | prdsplusgcl.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) | |
| 7 | prdsidlem.z | ⊢ 0 = ( 0g ∘ 𝑅 ) | |
| 8 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ V ) | |
| 9 | 6 | feqmptd | ⊢ ( 𝜑 → 𝑅 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) |
| 10 | fn0g | ⊢ 0g Fn V | |
| 11 | 10 | a1i | ⊢ ( 𝜑 → 0g Fn V ) |
| 12 | dffn5 | ⊢ ( 0g Fn V ↔ 0g = ( 𝑥 ∈ V ↦ ( 0g ‘ 𝑥 ) ) ) | |
| 13 | 11 12 | sylib | ⊢ ( 𝜑 → 0g = ( 𝑥 ∈ V ↦ ( 0g ‘ 𝑥 ) ) ) |
| 14 | fveq2 | ⊢ ( 𝑥 = ( 𝑅 ‘ 𝑦 ) → ( 0g ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) | |
| 15 | 8 9 13 14 | fmptco | ⊢ ( 𝜑 → ( 0g ∘ 𝑅 ) = ( 𝑦 ∈ 𝐼 ↦ ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 16 | 7 15 | eqtrid | ⊢ ( 𝜑 → 0 = ( 𝑦 ∈ 𝐼 ↦ ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 17 | 6 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ Mnd ) |
| 18 | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) | |
| 19 | eqid | ⊢ ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) | |
| 20 | 18 19 | mndidcl | ⊢ ( ( 𝑅 ‘ 𝑦 ) ∈ Mnd → ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 21 | 17 20 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 22 | 21 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐼 ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 23 | 6 | ffnd | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 24 | 1 2 4 5 23 | prdsbasmpt | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐼 ↦ ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∈ 𝐵 ↔ ∀ 𝑦 ∈ 𝐼 ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 25 | 22 24 | mpbird | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∈ 𝐵 ) |
| 26 | 16 25 | eqeltrd | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 27 | 7 | fveq1i | ⊢ ( 0 ‘ 𝑦 ) = ( ( 0g ∘ 𝑅 ) ‘ 𝑦 ) |
| 28 | fvco2 | ⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝑦 ∈ 𝐼 ) → ( ( 0g ∘ 𝑅 ) ‘ 𝑦 ) = ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) | |
| 29 | 23 28 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ( 0g ∘ 𝑅 ) ‘ 𝑦 ) = ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 30 | 27 29 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 0 ‘ 𝑦 ) = ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 31 | 30 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( 0 ‘ 𝑦 ) = ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 32 | 31 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 0 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) ) = ( ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) ) ) |
| 33 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑅 : 𝐼 ⟶ Mnd ) |
| 34 | 33 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ Mnd ) |
| 35 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → 𝑆 ∈ 𝑉 ) |
| 36 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 37 | 23 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 38 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → 𝑥 ∈ 𝐵 ) | |
| 39 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) | |
| 40 | 1 2 35 36 37 38 39 | prdsbasprj | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 41 | eqid | ⊢ ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) | |
| 42 | 18 41 19 | mndlid | ⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ Mnd ∧ ( 𝑥 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) → ( ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) ) = ( 𝑥 ‘ 𝑦 ) ) |
| 43 | 34 40 42 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) ) = ( 𝑥 ‘ 𝑦 ) ) |
| 44 | 32 43 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 0 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) ) = ( 𝑥 ‘ 𝑦 ) ) |
| 45 | 44 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 0 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑦 ) ) ) |
| 46 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑆 ∈ 𝑉 ) |
| 47 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐼 ∈ 𝑊 ) |
| 48 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑅 Fn 𝐼 ) |
| 49 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
| 50 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 51 | 1 2 46 47 48 49 50 3 | prdsplusgval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 0 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 52 | 1 2 46 47 48 50 | prdsbasfn | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 Fn 𝐼 ) |
| 53 | dffn5 | ⊢ ( 𝑥 Fn 𝐼 ↔ 𝑥 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑦 ) ) ) | |
| 54 | 52 53 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑦 ) ) ) |
| 55 | 45 51 54 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 56 | 31 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 0 ‘ 𝑦 ) ) = ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 57 | 18 41 19 | mndrid | ⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ Mnd ∧ ( 𝑥 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) → ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( 𝑥 ‘ 𝑦 ) ) |
| 58 | 34 40 57 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( 𝑥 ‘ 𝑦 ) ) |
| 59 | 56 58 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 0 ‘ 𝑦 ) ) = ( 𝑥 ‘ 𝑦 ) ) |
| 60 | 59 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 0 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑦 ) ) ) |
| 61 | 1 2 46 47 48 50 49 3 | prdsplusgval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 0 ‘ 𝑦 ) ) ) ) |
| 62 | 60 61 54 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 63 | 55 62 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) |
| 64 | 63 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) |
| 65 | 26 64 | jca | ⊢ ( 𝜑 → ( 0 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) ) |