This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of identity in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsplusgcl.y | |- Y = ( S Xs_ R ) |
|
| prdsplusgcl.b | |- B = ( Base ` Y ) |
||
| prdsplusgcl.p | |- .+ = ( +g ` Y ) |
||
| prdsplusgcl.s | |- ( ph -> S e. V ) |
||
| prdsplusgcl.i | |- ( ph -> I e. W ) |
||
| prdsplusgcl.r | |- ( ph -> R : I --> Mnd ) |
||
| prdsidlem.z | |- .0. = ( 0g o. R ) |
||
| Assertion | prdsidlem | |- ( ph -> ( .0. e. B /\ A. x e. B ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsplusgcl.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsplusgcl.b | |- B = ( Base ` Y ) |
|
| 3 | prdsplusgcl.p | |- .+ = ( +g ` Y ) |
|
| 4 | prdsplusgcl.s | |- ( ph -> S e. V ) |
|
| 5 | prdsplusgcl.i | |- ( ph -> I e. W ) |
|
| 6 | prdsplusgcl.r | |- ( ph -> R : I --> Mnd ) |
|
| 7 | prdsidlem.z | |- .0. = ( 0g o. R ) |
|
| 8 | fvexd | |- ( ( ph /\ y e. I ) -> ( R ` y ) e. _V ) |
|
| 9 | 6 | feqmptd | |- ( ph -> R = ( y e. I |-> ( R ` y ) ) ) |
| 10 | fn0g | |- 0g Fn _V |
|
| 11 | 10 | a1i | |- ( ph -> 0g Fn _V ) |
| 12 | dffn5 | |- ( 0g Fn _V <-> 0g = ( x e. _V |-> ( 0g ` x ) ) ) |
|
| 13 | 11 12 | sylib | |- ( ph -> 0g = ( x e. _V |-> ( 0g ` x ) ) ) |
| 14 | fveq2 | |- ( x = ( R ` y ) -> ( 0g ` x ) = ( 0g ` ( R ` y ) ) ) |
|
| 15 | 8 9 13 14 | fmptco | |- ( ph -> ( 0g o. R ) = ( y e. I |-> ( 0g ` ( R ` y ) ) ) ) |
| 16 | 7 15 | eqtrid | |- ( ph -> .0. = ( y e. I |-> ( 0g ` ( R ` y ) ) ) ) |
| 17 | 6 | ffvelcdmda | |- ( ( ph /\ y e. I ) -> ( R ` y ) e. Mnd ) |
| 18 | eqid | |- ( Base ` ( R ` y ) ) = ( Base ` ( R ` y ) ) |
|
| 19 | eqid | |- ( 0g ` ( R ` y ) ) = ( 0g ` ( R ` y ) ) |
|
| 20 | 18 19 | mndidcl | |- ( ( R ` y ) e. Mnd -> ( 0g ` ( R ` y ) ) e. ( Base ` ( R ` y ) ) ) |
| 21 | 17 20 | syl | |- ( ( ph /\ y e. I ) -> ( 0g ` ( R ` y ) ) e. ( Base ` ( R ` y ) ) ) |
| 22 | 21 | ralrimiva | |- ( ph -> A. y e. I ( 0g ` ( R ` y ) ) e. ( Base ` ( R ` y ) ) ) |
| 23 | 6 | ffnd | |- ( ph -> R Fn I ) |
| 24 | 1 2 4 5 23 | prdsbasmpt | |- ( ph -> ( ( y e. I |-> ( 0g ` ( R ` y ) ) ) e. B <-> A. y e. I ( 0g ` ( R ` y ) ) e. ( Base ` ( R ` y ) ) ) ) |
| 25 | 22 24 | mpbird | |- ( ph -> ( y e. I |-> ( 0g ` ( R ` y ) ) ) e. B ) |
| 26 | 16 25 | eqeltrd | |- ( ph -> .0. e. B ) |
| 27 | 7 | fveq1i | |- ( .0. ` y ) = ( ( 0g o. R ) ` y ) |
| 28 | fvco2 | |- ( ( R Fn I /\ y e. I ) -> ( ( 0g o. R ) ` y ) = ( 0g ` ( R ` y ) ) ) |
|
| 29 | 23 28 | sylan | |- ( ( ph /\ y e. I ) -> ( ( 0g o. R ) ` y ) = ( 0g ` ( R ` y ) ) ) |
| 30 | 27 29 | eqtrid | |- ( ( ph /\ y e. I ) -> ( .0. ` y ) = ( 0g ` ( R ` y ) ) ) |
| 31 | 30 | adantlr | |- ( ( ( ph /\ x e. B ) /\ y e. I ) -> ( .0. ` y ) = ( 0g ` ( R ` y ) ) ) |
| 32 | 31 | oveq1d | |- ( ( ( ph /\ x e. B ) /\ y e. I ) -> ( ( .0. ` y ) ( +g ` ( R ` y ) ) ( x ` y ) ) = ( ( 0g ` ( R ` y ) ) ( +g ` ( R ` y ) ) ( x ` y ) ) ) |
| 33 | 6 | adantr | |- ( ( ph /\ x e. B ) -> R : I --> Mnd ) |
| 34 | 33 | ffvelcdmda | |- ( ( ( ph /\ x e. B ) /\ y e. I ) -> ( R ` y ) e. Mnd ) |
| 35 | 4 | ad2antrr | |- ( ( ( ph /\ x e. B ) /\ y e. I ) -> S e. V ) |
| 36 | 5 | ad2antrr | |- ( ( ( ph /\ x e. B ) /\ y e. I ) -> I e. W ) |
| 37 | 23 | ad2antrr | |- ( ( ( ph /\ x e. B ) /\ y e. I ) -> R Fn I ) |
| 38 | simplr | |- ( ( ( ph /\ x e. B ) /\ y e. I ) -> x e. B ) |
|
| 39 | simpr | |- ( ( ( ph /\ x e. B ) /\ y e. I ) -> y e. I ) |
|
| 40 | 1 2 35 36 37 38 39 | prdsbasprj | |- ( ( ( ph /\ x e. B ) /\ y e. I ) -> ( x ` y ) e. ( Base ` ( R ` y ) ) ) |
| 41 | eqid | |- ( +g ` ( R ` y ) ) = ( +g ` ( R ` y ) ) |
|
| 42 | 18 41 19 | mndlid | |- ( ( ( R ` y ) e. Mnd /\ ( x ` y ) e. ( Base ` ( R ` y ) ) ) -> ( ( 0g ` ( R ` y ) ) ( +g ` ( R ` y ) ) ( x ` y ) ) = ( x ` y ) ) |
| 43 | 34 40 42 | syl2anc | |- ( ( ( ph /\ x e. B ) /\ y e. I ) -> ( ( 0g ` ( R ` y ) ) ( +g ` ( R ` y ) ) ( x ` y ) ) = ( x ` y ) ) |
| 44 | 32 43 | eqtrd | |- ( ( ( ph /\ x e. B ) /\ y e. I ) -> ( ( .0. ` y ) ( +g ` ( R ` y ) ) ( x ` y ) ) = ( x ` y ) ) |
| 45 | 44 | mpteq2dva | |- ( ( ph /\ x e. B ) -> ( y e. I |-> ( ( .0. ` y ) ( +g ` ( R ` y ) ) ( x ` y ) ) ) = ( y e. I |-> ( x ` y ) ) ) |
| 46 | 4 | adantr | |- ( ( ph /\ x e. B ) -> S e. V ) |
| 47 | 5 | adantr | |- ( ( ph /\ x e. B ) -> I e. W ) |
| 48 | 23 | adantr | |- ( ( ph /\ x e. B ) -> R Fn I ) |
| 49 | 26 | adantr | |- ( ( ph /\ x e. B ) -> .0. e. B ) |
| 50 | simpr | |- ( ( ph /\ x e. B ) -> x e. B ) |
|
| 51 | 1 2 46 47 48 49 50 3 | prdsplusgval | |- ( ( ph /\ x e. B ) -> ( .0. .+ x ) = ( y e. I |-> ( ( .0. ` y ) ( +g ` ( R ` y ) ) ( x ` y ) ) ) ) |
| 52 | 1 2 46 47 48 50 | prdsbasfn | |- ( ( ph /\ x e. B ) -> x Fn I ) |
| 53 | dffn5 | |- ( x Fn I <-> x = ( y e. I |-> ( x ` y ) ) ) |
|
| 54 | 52 53 | sylib | |- ( ( ph /\ x e. B ) -> x = ( y e. I |-> ( x ` y ) ) ) |
| 55 | 45 51 54 | 3eqtr4d | |- ( ( ph /\ x e. B ) -> ( .0. .+ x ) = x ) |
| 56 | 31 | oveq2d | |- ( ( ( ph /\ x e. B ) /\ y e. I ) -> ( ( x ` y ) ( +g ` ( R ` y ) ) ( .0. ` y ) ) = ( ( x ` y ) ( +g ` ( R ` y ) ) ( 0g ` ( R ` y ) ) ) ) |
| 57 | 18 41 19 | mndrid | |- ( ( ( R ` y ) e. Mnd /\ ( x ` y ) e. ( Base ` ( R ` y ) ) ) -> ( ( x ` y ) ( +g ` ( R ` y ) ) ( 0g ` ( R ` y ) ) ) = ( x ` y ) ) |
| 58 | 34 40 57 | syl2anc | |- ( ( ( ph /\ x e. B ) /\ y e. I ) -> ( ( x ` y ) ( +g ` ( R ` y ) ) ( 0g ` ( R ` y ) ) ) = ( x ` y ) ) |
| 59 | 56 58 | eqtrd | |- ( ( ( ph /\ x e. B ) /\ y e. I ) -> ( ( x ` y ) ( +g ` ( R ` y ) ) ( .0. ` y ) ) = ( x ` y ) ) |
| 60 | 59 | mpteq2dva | |- ( ( ph /\ x e. B ) -> ( y e. I |-> ( ( x ` y ) ( +g ` ( R ` y ) ) ( .0. ` y ) ) ) = ( y e. I |-> ( x ` y ) ) ) |
| 61 | 1 2 46 47 48 50 49 3 | prdsplusgval | |- ( ( ph /\ x e. B ) -> ( x .+ .0. ) = ( y e. I |-> ( ( x ` y ) ( +g ` ( R ` y ) ) ( .0. ` y ) ) ) ) |
| 62 | 60 61 54 | 3eqtr4d | |- ( ( ph /\ x e. B ) -> ( x .+ .0. ) = x ) |
| 63 | 55 62 | jca | |- ( ( ph /\ x e. B ) -> ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) |
| 64 | 63 | ralrimiva | |- ( ph -> A. x e. B ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) |
| 65 | 26 64 | jca | |- ( ph -> ( .0. e. B /\ A. x e. B ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) ) |