This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fn0g | ⊢ 0g Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaex | ⊢ ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) = 𝑥 ) ) ) ∈ V | |
| 2 | df-0g | ⊢ 0g = ( 𝑔 ∈ V ↦ ( ℩ 𝑒 ( 𝑒 ∈ ( Base ‘ 𝑔 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( ( 𝑒 ( +g ‘ 𝑔 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ 𝑔 ) 𝑒 ) = 𝑥 ) ) ) ) | |
| 3 | 1 2 | fnmpti | ⊢ 0g Fn V |