This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite commutative sums in a product structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Mario Carneiro, 3-Jul-2015) (Revised by AV, 9-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsgsum.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| prdsgsum.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| prdsgsum.z | ⊢ 0 = ( 0g ‘ 𝑌 ) | ||
| prdsgsum.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| prdsgsum.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | ||
| prdsgsum.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑋 ) | ||
| prdsgsum.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ CMnd ) | ||
| prdsgsum.f | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) ) → 𝑈 ∈ 𝐵 ) | ||
| prdsgsum.w | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp 0 ) | ||
| Assertion | prdsgsum | ⊢ ( 𝜑 → ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsgsum.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| 2 | prdsgsum.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | prdsgsum.z | ⊢ 0 = ( 0g ‘ 𝑌 ) | |
| 4 | prdsgsum.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 5 | prdsgsum.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) | |
| 6 | prdsgsum.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑋 ) | |
| 7 | prdsgsum.r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ CMnd ) | |
| 8 | prdsgsum.f | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) ) → 𝑈 ∈ 𝐵 ) | |
| 9 | prdsgsum.w | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp 0 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 11 | 7 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) : 𝐼 ⟶ CMnd ) |
| 12 | 11 | ffnd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) Fn 𝐼 ) |
| 13 | 1 4 6 11 | prdscmnd | ⊢ ( 𝜑 → 𝑌 ∈ CMnd ) |
| 14 | 8 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → 𝑈 ∈ 𝐵 ) |
| 15 | 14 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑈 ∈ 𝐵 ) |
| 16 | 15 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ∀ 𝑥 ∈ 𝐼 𝑈 ∈ 𝐵 ) |
| 17 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ CMnd ) |
| 18 | 1 10 6 4 17 2 | prdsbasmpt2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ ( Base ‘ 𝑌 ) ↔ ∀ 𝑥 ∈ 𝐼 𝑈 ∈ 𝐵 ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ ( Base ‘ 𝑌 ) ↔ ∀ 𝑥 ∈ 𝐼 𝑈 ∈ 𝐵 ) ) |
| 20 | 16 19 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ ( Base ‘ 𝑌 ) ) |
| 21 | 20 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) : 𝐽 ⟶ ( Base ‘ 𝑌 ) ) |
| 22 | 10 3 13 5 21 9 | gsumcl | ⊢ ( 𝜑 → ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 23 | 1 10 6 4 12 22 | prdsbasfn | ⊢ ( 𝜑 → ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) Fn 𝐼 ) |
| 24 | nfcv | ⊢ Ⅎ 𝑥 𝑌 | |
| 25 | nfcv | ⊢ Ⅎ 𝑥 Σg | |
| 26 | nfcv | ⊢ Ⅎ 𝑥 𝐽 | |
| 27 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) | |
| 28 | 26 27 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) |
| 29 | 24 25 28 | nfov | ⊢ Ⅎ 𝑥 ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) |
| 30 | 29 | dffn5f | ⊢ ( ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) Fn 𝐼 ↔ ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) ) |
| 31 | 23 30 | sylib | ⊢ ( 𝜑 → ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) ) |
| 32 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) | |
| 33 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) | |
| 34 | 33 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑈 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) = 𝑈 ) |
| 35 | 32 14 34 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) = 𝑈 ) |
| 36 | 35 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐽 ↦ ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) ) = ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) |
| 37 | 36 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) |
| 38 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑌 ∈ CMnd ) |
| 39 | cmnmnd | ⊢ ( 𝑅 ∈ CMnd → 𝑅 ∈ Mnd ) | |
| 40 | 7 39 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Mnd ) |
| 41 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐽 ∈ 𝑊 ) |
| 42 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑉 ) |
| 43 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ 𝑋 ) |
| 44 | 40 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) : 𝐼 ⟶ Mnd ) |
| 45 | 44 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) : 𝐼 ⟶ Mnd ) |
| 46 | 1 10 42 43 45 32 | prdspjmhm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑎 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ∈ ( 𝑌 MndHom ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) ) |
| 47 | eqid | ⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) | |
| 48 | 47 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑅 ∈ CMnd ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) = 𝑅 ) |
| 49 | 32 7 48 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) = 𝑅 ) |
| 50 | 49 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑌 MndHom ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) = ( 𝑌 MndHom 𝑅 ) ) |
| 51 | 46 50 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑎 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ∈ ( 𝑌 MndHom 𝑅 ) ) |
| 52 | 20 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ ( Base ‘ 𝑌 ) ) |
| 53 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp 0 ) |
| 54 | fveq1 | ⊢ ( 𝑎 = ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) → ( 𝑎 ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) ) | |
| 55 | fveq1 | ⊢ ( 𝑎 = ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) → ( 𝑎 ‘ 𝑥 ) = ( ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) | |
| 56 | 10 3 38 40 41 51 52 53 54 55 | gsummhm2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) ) ) = ( ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) |
| 57 | 37 56 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) |
| 58 | 57 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) ) |
| 59 | 31 58 | eqtr4d | ⊢ ( 𝜑 → ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |