This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constructed tuple is a point in a structure product iff each coordinate is in the proper base set. (Contributed by Mario Carneiro, 3-Jul-2015) (Revised by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt2.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| prdsbasmpt2.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsbasmpt2.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsbasmpt2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsbasmpt2.r | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 ) | ||
| prdsbasmpt2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| Assertion | prdsbasmpt2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐼 𝑈 ∈ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt2.y | ⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) | |
| 2 | prdsbasmpt2.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsbasmpt2.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdsbasmpt2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | prdsbasmpt2.r | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 ) | |
| 6 | prdsbasmpt2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 7 | 1 2 3 4 5 6 | prdsbas3 | ⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 𝐾 ) |
| 8 | 7 | eleq2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ X 𝑥 ∈ 𝐼 𝐾 ) ) |
| 9 | mptelixpg | ⊢ ( 𝐼 ∈ 𝑊 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ X 𝑥 ∈ 𝐼 𝐾 ↔ ∀ 𝑥 ∈ 𝐼 𝑈 ∈ 𝐾 ) ) | |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ X 𝑥 ∈ 𝐼 𝐾 ↔ ∀ 𝑥 ∈ 𝐼 𝑈 ∈ 𝐾 ) ) |
| 11 | 8 10 | bitrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐼 𝑈 ∈ 𝐾 ) ) |