This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a family of commutative monoids is commutative. (Contributed by Stefan O'Rear, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdscmnd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdscmnd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdscmnd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdscmnd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ CMnd ) | ||
| Assertion | prdscmnd | ⊢ ( 𝜑 → 𝑌 ∈ CMnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdscmnd.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdscmnd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 3 | prdscmnd.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prdscmnd.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ CMnd ) | |
| 5 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) | |
| 6 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) ) | |
| 7 | cmnmnd | ⊢ ( 𝑎 ∈ CMnd → 𝑎 ∈ Mnd ) | |
| 8 | 7 | ssriv | ⊢ CMnd ⊆ Mnd |
| 9 | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ CMnd ∧ CMnd ⊆ Mnd ) → 𝑅 : 𝐼 ⟶ Mnd ) | |
| 10 | 4 8 9 | sylancl | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) |
| 11 | 1 2 3 10 | prdsmndd | ⊢ ( 𝜑 → 𝑌 ∈ Mnd ) |
| 12 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝑅 : 𝐼 ⟶ CMnd ) |
| 13 | 12 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑐 ) ∈ CMnd ) |
| 14 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 15 | 3 | elexd | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝑆 ∈ V ) |
| 17 | 16 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝑆 ∈ V ) |
| 18 | 2 | elexd | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 19 | 18 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝐼 ∈ V ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝐼 ∈ V ) |
| 21 | 4 | ffnd | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝑅 Fn 𝐼 ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 24 | simpl2 | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) | |
| 25 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝑐 ∈ 𝐼 ) | |
| 26 | 1 14 17 20 23 24 25 | prdsbasprj | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → ( 𝑎 ‘ 𝑐 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) ) |
| 27 | simpl3 | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) | |
| 28 | 1 14 17 20 23 27 25 | prdsbasprj | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → ( 𝑏 ‘ 𝑐 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) ) |
| 29 | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) | |
| 30 | eqid | ⊢ ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) | |
| 31 | 29 30 | cmncom | ⊢ ( ( ( 𝑅 ‘ 𝑐 ) ∈ CMnd ∧ ( 𝑎 ‘ 𝑐 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) ∧ ( 𝑏 ‘ 𝑐 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) ) → ( ( 𝑎 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑏 ‘ 𝑐 ) ) = ( ( 𝑏 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑎 ‘ 𝑐 ) ) ) |
| 32 | 13 26 28 31 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑏 ‘ 𝑐 ) ) = ( ( 𝑏 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑎 ‘ 𝑐 ) ) ) |
| 33 | 32 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑐 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑏 ‘ 𝑐 ) ) ) = ( 𝑐 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑎 ‘ 𝑐 ) ) ) ) |
| 34 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) | |
| 35 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) | |
| 36 | eqid | ⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) | |
| 37 | 1 14 16 19 22 34 35 36 | prdsplusgval | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) = ( 𝑐 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑏 ‘ 𝑐 ) ) ) ) |
| 38 | 1 14 16 19 22 35 34 36 | prdsplusgval | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑏 ( +g ‘ 𝑌 ) 𝑎 ) = ( 𝑐 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑎 ‘ 𝑐 ) ) ) ) |
| 39 | 33 37 38 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑌 ) 𝑎 ) ) |
| 40 | 5 6 11 39 | iscmnd | ⊢ ( 𝜑 → 𝑌 ∈ CMnd ) |