This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite commutative sums in a product structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by Mario Carneiro, 3-Jul-2015) (Revised by AV, 9-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsgsum.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) |
|
| prdsgsum.b | |- B = ( Base ` R ) |
||
| prdsgsum.z | |- .0. = ( 0g ` Y ) |
||
| prdsgsum.i | |- ( ph -> I e. V ) |
||
| prdsgsum.j | |- ( ph -> J e. W ) |
||
| prdsgsum.s | |- ( ph -> S e. X ) |
||
| prdsgsum.r | |- ( ( ph /\ x e. I ) -> R e. CMnd ) |
||
| prdsgsum.f | |- ( ( ph /\ ( x e. I /\ y e. J ) ) -> U e. B ) |
||
| prdsgsum.w | |- ( ph -> ( y e. J |-> ( x e. I |-> U ) ) finSupp .0. ) |
||
| Assertion | prdsgsum | |- ( ph -> ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( x e. I |-> ( R gsum ( y e. J |-> U ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsgsum.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) |
|
| 2 | prdsgsum.b | |- B = ( Base ` R ) |
|
| 3 | prdsgsum.z | |- .0. = ( 0g ` Y ) |
|
| 4 | prdsgsum.i | |- ( ph -> I e. V ) |
|
| 5 | prdsgsum.j | |- ( ph -> J e. W ) |
|
| 6 | prdsgsum.s | |- ( ph -> S e. X ) |
|
| 7 | prdsgsum.r | |- ( ( ph /\ x e. I ) -> R e. CMnd ) |
|
| 8 | prdsgsum.f | |- ( ( ph /\ ( x e. I /\ y e. J ) ) -> U e. B ) |
|
| 9 | prdsgsum.w | |- ( ph -> ( y e. J |-> ( x e. I |-> U ) ) finSupp .0. ) |
|
| 10 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 11 | 7 | fmpttd | |- ( ph -> ( x e. I |-> R ) : I --> CMnd ) |
| 12 | 11 | ffnd | |- ( ph -> ( x e. I |-> R ) Fn I ) |
| 13 | 1 4 6 11 | prdscmnd | |- ( ph -> Y e. CMnd ) |
| 14 | 8 | anassrs | |- ( ( ( ph /\ x e. I ) /\ y e. J ) -> U e. B ) |
| 15 | 14 | an32s | |- ( ( ( ph /\ y e. J ) /\ x e. I ) -> U e. B ) |
| 16 | 15 | ralrimiva | |- ( ( ph /\ y e. J ) -> A. x e. I U e. B ) |
| 17 | 7 | ralrimiva | |- ( ph -> A. x e. I R e. CMnd ) |
| 18 | 1 10 6 4 17 2 | prdsbasmpt2 | |- ( ph -> ( ( x e. I |-> U ) e. ( Base ` Y ) <-> A. x e. I U e. B ) ) |
| 19 | 18 | adantr | |- ( ( ph /\ y e. J ) -> ( ( x e. I |-> U ) e. ( Base ` Y ) <-> A. x e. I U e. B ) ) |
| 20 | 16 19 | mpbird | |- ( ( ph /\ y e. J ) -> ( x e. I |-> U ) e. ( Base ` Y ) ) |
| 21 | 20 | fmpttd | |- ( ph -> ( y e. J |-> ( x e. I |-> U ) ) : J --> ( Base ` Y ) ) |
| 22 | 10 3 13 5 21 9 | gsumcl | |- ( ph -> ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) e. ( Base ` Y ) ) |
| 23 | 1 10 6 4 12 22 | prdsbasfn | |- ( ph -> ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) Fn I ) |
| 24 | nfcv | |- F/_ x Y |
|
| 25 | nfcv | |- F/_ x gsum |
|
| 26 | nfcv | |- F/_ x J |
|
| 27 | nfmpt1 | |- F/_ x ( x e. I |-> U ) |
|
| 28 | 26 27 | nfmpt | |- F/_ x ( y e. J |-> ( x e. I |-> U ) ) |
| 29 | 24 25 28 | nfov | |- F/_ x ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) |
| 30 | 29 | dffn5f | |- ( ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) Fn I <-> ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( x e. I |-> ( ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) ) |
| 31 | 23 30 | sylib | |- ( ph -> ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( x e. I |-> ( ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) ) |
| 32 | simpr | |- ( ( ph /\ x e. I ) -> x e. I ) |
|
| 33 | eqid | |- ( x e. I |-> U ) = ( x e. I |-> U ) |
|
| 34 | 33 | fvmpt2 | |- ( ( x e. I /\ U e. B ) -> ( ( x e. I |-> U ) ` x ) = U ) |
| 35 | 32 14 34 | syl2an2r | |- ( ( ( ph /\ x e. I ) /\ y e. J ) -> ( ( x e. I |-> U ) ` x ) = U ) |
| 36 | 35 | mpteq2dva | |- ( ( ph /\ x e. I ) -> ( y e. J |-> ( ( x e. I |-> U ) ` x ) ) = ( y e. J |-> U ) ) |
| 37 | 36 | oveq2d | |- ( ( ph /\ x e. I ) -> ( R gsum ( y e. J |-> ( ( x e. I |-> U ) ` x ) ) ) = ( R gsum ( y e. J |-> U ) ) ) |
| 38 | 13 | adantr | |- ( ( ph /\ x e. I ) -> Y e. CMnd ) |
| 39 | cmnmnd | |- ( R e. CMnd -> R e. Mnd ) |
|
| 40 | 7 39 | syl | |- ( ( ph /\ x e. I ) -> R e. Mnd ) |
| 41 | 5 | adantr | |- ( ( ph /\ x e. I ) -> J e. W ) |
| 42 | 4 | adantr | |- ( ( ph /\ x e. I ) -> I e. V ) |
| 43 | 6 | adantr | |- ( ( ph /\ x e. I ) -> S e. X ) |
| 44 | 40 | fmpttd | |- ( ph -> ( x e. I |-> R ) : I --> Mnd ) |
| 45 | 44 | adantr | |- ( ( ph /\ x e. I ) -> ( x e. I |-> R ) : I --> Mnd ) |
| 46 | 1 10 42 43 45 32 | prdspjmhm | |- ( ( ph /\ x e. I ) -> ( a e. ( Base ` Y ) |-> ( a ` x ) ) e. ( Y MndHom ( ( x e. I |-> R ) ` x ) ) ) |
| 47 | eqid | |- ( x e. I |-> R ) = ( x e. I |-> R ) |
|
| 48 | 47 | fvmpt2 | |- ( ( x e. I /\ R e. CMnd ) -> ( ( x e. I |-> R ) ` x ) = R ) |
| 49 | 32 7 48 | syl2anc | |- ( ( ph /\ x e. I ) -> ( ( x e. I |-> R ) ` x ) = R ) |
| 50 | 49 | oveq2d | |- ( ( ph /\ x e. I ) -> ( Y MndHom ( ( x e. I |-> R ) ` x ) ) = ( Y MndHom R ) ) |
| 51 | 46 50 | eleqtrd | |- ( ( ph /\ x e. I ) -> ( a e. ( Base ` Y ) |-> ( a ` x ) ) e. ( Y MndHom R ) ) |
| 52 | 20 | adantlr | |- ( ( ( ph /\ x e. I ) /\ y e. J ) -> ( x e. I |-> U ) e. ( Base ` Y ) ) |
| 53 | 9 | adantr | |- ( ( ph /\ x e. I ) -> ( y e. J |-> ( x e. I |-> U ) ) finSupp .0. ) |
| 54 | fveq1 | |- ( a = ( x e. I |-> U ) -> ( a ` x ) = ( ( x e. I |-> U ) ` x ) ) |
|
| 55 | fveq1 | |- ( a = ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) -> ( a ` x ) = ( ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) |
|
| 56 | 10 3 38 40 41 51 52 53 54 55 | gsummhm2 | |- ( ( ph /\ x e. I ) -> ( R gsum ( y e. J |-> ( ( x e. I |-> U ) ` x ) ) ) = ( ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) |
| 57 | 37 56 | eqtr3d | |- ( ( ph /\ x e. I ) -> ( R gsum ( y e. J |-> U ) ) = ( ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) |
| 58 | 57 | mpteq2dva | |- ( ph -> ( x e. I |-> ( R gsum ( y e. J |-> U ) ) ) = ( x e. I |-> ( ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) ` x ) ) ) |
| 59 | 31 58 | eqtr4d | |- ( ph -> ( Y gsum ( y e. J |-> ( x e. I |-> U ) ) ) = ( x e. I |-> ( R gsum ( y e. J |-> U ) ) ) ) |