This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A generated transposition, expressed in a symmetric form. (Contributed by Stefan O'Rear, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pmtrfval.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| Assertion | pmtrval | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrfval.t | ⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) | |
| 2 | 1 | pmtrfval | ⊢ ( 𝐷 ∈ 𝑉 → 𝑇 = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| 3 | 2 | fveq1d | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝑇 ‘ 𝑃 ) = ( ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ‘ 𝑃 ) ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) = ( ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ‘ 𝑃 ) ) |
| 5 | eqid | ⊢ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) | |
| 6 | eleq2 | ⊢ ( 𝑝 = 𝑃 → ( 𝑧 ∈ 𝑝 ↔ 𝑧 ∈ 𝑃 ) ) | |
| 7 | difeq1 | ⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∖ { 𝑧 } ) = ( 𝑃 ∖ { 𝑧 } ) ) | |
| 8 | 7 | unieqd | ⊢ ( 𝑝 = 𝑃 → ∪ ( 𝑝 ∖ { 𝑧 } ) = ∪ ( 𝑃 ∖ { 𝑧 } ) ) |
| 9 | 6 8 | ifbieq1d | ⊢ ( 𝑝 = 𝑃 → if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) = if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) |
| 10 | 9 | mpteq2dv | ⊢ ( 𝑝 = 𝑃 → ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
| 11 | breq1 | ⊢ ( 𝑦 = 𝑃 → ( 𝑦 ≈ 2o ↔ 𝑃 ≈ 2o ) ) | |
| 12 | elpw2g | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝑃 ∈ 𝒫 𝐷 ↔ 𝑃 ⊆ 𝐷 ) ) | |
| 13 | 12 | biimpar | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ) → 𝑃 ∈ 𝒫 𝐷 ) |
| 14 | 13 | 3adant3 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑃 ∈ 𝒫 𝐷 ) |
| 15 | simp3 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑃 ≈ 2o ) | |
| 16 | 11 14 15 | elrabd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑃 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) |
| 17 | mptexg | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V ) | |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V ) |
| 19 | 5 10 16 18 | fvmptd3 | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ‘ 𝑃 ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
| 20 | 4 19 | eqtrd | ⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ) |