This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transpositions on a pair. (Contributed by AV, 9-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pmtrprfval | ⊢ ( pmTrsp ‘ { 1 , 2 } ) = ( 𝑝 ∈ { { 1 , 2 } } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 = 1 , 2 , 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prex | ⊢ { 1 , 2 } ∈ V | |
| 2 | eqid | ⊢ ( pmTrsp ‘ { 1 , 2 } ) = ( pmTrsp ‘ { 1 , 2 } ) | |
| 3 | 2 | pmtrfval | ⊢ ( { 1 , 2 } ∈ V → ( pmTrsp ‘ { 1 , 2 } ) = ( 𝑝 ∈ { 𝑡 ∈ 𝒫 { 1 , 2 } ∣ 𝑡 ≈ 2o } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| 4 | 1 3 | ax-mp | ⊢ ( pmTrsp ‘ { 1 , 2 } ) = ( 𝑝 ∈ { 𝑡 ∈ 𝒫 { 1 , 2 } ∣ 𝑡 ≈ 2o } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
| 5 | 1ex | ⊢ 1 ∈ V | |
| 6 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 7 | 1ne2 | ⊢ 1 ≠ 2 | |
| 8 | pr2pwpr | ⊢ ( ( 1 ∈ V ∧ 2 ∈ ℕ0 ∧ 1 ≠ 2 ) → { 𝑡 ∈ 𝒫 { 1 , 2 } ∣ 𝑡 ≈ 2o } = { { 1 , 2 } } ) | |
| 9 | 5 6 7 8 | mp3an | ⊢ { 𝑡 ∈ 𝒫 { 1 , 2 } ∣ 𝑡 ≈ 2o } = { { 1 , 2 } } |
| 10 | 9 | mpteq1i | ⊢ ( 𝑝 ∈ { 𝑡 ∈ 𝒫 { 1 , 2 } ∣ 𝑡 ≈ 2o } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ( 𝑝 ∈ { { 1 , 2 } } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
| 11 | elsni | ⊢ ( 𝑝 ∈ { { 1 , 2 } } → 𝑝 = { 1 , 2 } ) | |
| 12 | eleq2 | ⊢ ( 𝑝 = { 1 , 2 } → ( 𝑧 ∈ 𝑝 ↔ 𝑧 ∈ { 1 , 2 } ) ) | |
| 13 | 12 | biimpar | ⊢ ( ( 𝑝 = { 1 , 2 } ∧ 𝑧 ∈ { 1 , 2 } ) → 𝑧 ∈ 𝑝 ) |
| 14 | 13 | iftrued | ⊢ ( ( 𝑝 = { 1 , 2 } ∧ 𝑧 ∈ { 1 , 2 } ) → if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) = ∪ ( 𝑝 ∖ { 𝑧 } ) ) |
| 15 | elpri | ⊢ ( 𝑧 ∈ { 1 , 2 } → ( 𝑧 = 1 ∨ 𝑧 = 2 ) ) | |
| 16 | 2ex | ⊢ 2 ∈ V | |
| 17 | 16 | unisn | ⊢ ∪ { 2 } = 2 |
| 18 | simpr | ⊢ ( ( 𝑧 = 1 ∧ 𝑝 = { 1 , 2 } ) → 𝑝 = { 1 , 2 } ) | |
| 19 | sneq | ⊢ ( 𝑧 = 1 → { 𝑧 } = { 1 } ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝑧 = 1 ∧ 𝑝 = { 1 , 2 } ) → { 𝑧 } = { 1 } ) |
| 21 | 18 20 | difeq12d | ⊢ ( ( 𝑧 = 1 ∧ 𝑝 = { 1 , 2 } ) → ( 𝑝 ∖ { 𝑧 } ) = ( { 1 , 2 } ∖ { 1 } ) ) |
| 22 | difprsn1 | ⊢ ( 1 ≠ 2 → ( { 1 , 2 } ∖ { 1 } ) = { 2 } ) | |
| 23 | 7 22 | ax-mp | ⊢ ( { 1 , 2 } ∖ { 1 } ) = { 2 } |
| 24 | 21 23 | eqtrdi | ⊢ ( ( 𝑧 = 1 ∧ 𝑝 = { 1 , 2 } ) → ( 𝑝 ∖ { 𝑧 } ) = { 2 } ) |
| 25 | 24 | unieqd | ⊢ ( ( 𝑧 = 1 ∧ 𝑝 = { 1 , 2 } ) → ∪ ( 𝑝 ∖ { 𝑧 } ) = ∪ { 2 } ) |
| 26 | iftrue | ⊢ ( 𝑧 = 1 → if ( 𝑧 = 1 , 2 , 1 ) = 2 ) | |
| 27 | 26 | adantr | ⊢ ( ( 𝑧 = 1 ∧ 𝑝 = { 1 , 2 } ) → if ( 𝑧 = 1 , 2 , 1 ) = 2 ) |
| 28 | 17 25 27 | 3eqtr4a | ⊢ ( ( 𝑧 = 1 ∧ 𝑝 = { 1 , 2 } ) → ∪ ( 𝑝 ∖ { 𝑧 } ) = if ( 𝑧 = 1 , 2 , 1 ) ) |
| 29 | 28 | ex | ⊢ ( 𝑧 = 1 → ( 𝑝 = { 1 , 2 } → ∪ ( 𝑝 ∖ { 𝑧 } ) = if ( 𝑧 = 1 , 2 , 1 ) ) ) |
| 30 | 5 | unisn | ⊢ ∪ { 1 } = 1 |
| 31 | simpr | ⊢ ( ( 𝑧 = 2 ∧ 𝑝 = { 1 , 2 } ) → 𝑝 = { 1 , 2 } ) | |
| 32 | sneq | ⊢ ( 𝑧 = 2 → { 𝑧 } = { 2 } ) | |
| 33 | 32 | adantr | ⊢ ( ( 𝑧 = 2 ∧ 𝑝 = { 1 , 2 } ) → { 𝑧 } = { 2 } ) |
| 34 | 31 33 | difeq12d | ⊢ ( ( 𝑧 = 2 ∧ 𝑝 = { 1 , 2 } ) → ( 𝑝 ∖ { 𝑧 } ) = ( { 1 , 2 } ∖ { 2 } ) ) |
| 35 | difprsn2 | ⊢ ( 1 ≠ 2 → ( { 1 , 2 } ∖ { 2 } ) = { 1 } ) | |
| 36 | 7 35 | ax-mp | ⊢ ( { 1 , 2 } ∖ { 2 } ) = { 1 } |
| 37 | 34 36 | eqtrdi | ⊢ ( ( 𝑧 = 2 ∧ 𝑝 = { 1 , 2 } ) → ( 𝑝 ∖ { 𝑧 } ) = { 1 } ) |
| 38 | 37 | unieqd | ⊢ ( ( 𝑧 = 2 ∧ 𝑝 = { 1 , 2 } ) → ∪ ( 𝑝 ∖ { 𝑧 } ) = ∪ { 1 } ) |
| 39 | 7 | nesymi | ⊢ ¬ 2 = 1 |
| 40 | eqeq1 | ⊢ ( 𝑧 = 2 → ( 𝑧 = 1 ↔ 2 = 1 ) ) | |
| 41 | 39 40 | mtbiri | ⊢ ( 𝑧 = 2 → ¬ 𝑧 = 1 ) |
| 42 | 41 | iffalsed | ⊢ ( 𝑧 = 2 → if ( 𝑧 = 1 , 2 , 1 ) = 1 ) |
| 43 | 42 | adantr | ⊢ ( ( 𝑧 = 2 ∧ 𝑝 = { 1 , 2 } ) → if ( 𝑧 = 1 , 2 , 1 ) = 1 ) |
| 44 | 30 38 43 | 3eqtr4a | ⊢ ( ( 𝑧 = 2 ∧ 𝑝 = { 1 , 2 } ) → ∪ ( 𝑝 ∖ { 𝑧 } ) = if ( 𝑧 = 1 , 2 , 1 ) ) |
| 45 | 44 | ex | ⊢ ( 𝑧 = 2 → ( 𝑝 = { 1 , 2 } → ∪ ( 𝑝 ∖ { 𝑧 } ) = if ( 𝑧 = 1 , 2 , 1 ) ) ) |
| 46 | 29 45 | jaoi | ⊢ ( ( 𝑧 = 1 ∨ 𝑧 = 2 ) → ( 𝑝 = { 1 , 2 } → ∪ ( 𝑝 ∖ { 𝑧 } ) = if ( 𝑧 = 1 , 2 , 1 ) ) ) |
| 47 | 15 46 | syl | ⊢ ( 𝑧 ∈ { 1 , 2 } → ( 𝑝 = { 1 , 2 } → ∪ ( 𝑝 ∖ { 𝑧 } ) = if ( 𝑧 = 1 , 2 , 1 ) ) ) |
| 48 | 47 | impcom | ⊢ ( ( 𝑝 = { 1 , 2 } ∧ 𝑧 ∈ { 1 , 2 } ) → ∪ ( 𝑝 ∖ { 𝑧 } ) = if ( 𝑧 = 1 , 2 , 1 ) ) |
| 49 | 14 48 | eqtrd | ⊢ ( ( 𝑝 = { 1 , 2 } ∧ 𝑧 ∈ { 1 , 2 } ) → if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) = if ( 𝑧 = 1 , 2 , 1 ) ) |
| 50 | 11 49 | sylan | ⊢ ( ( 𝑝 ∈ { { 1 , 2 } } ∧ 𝑧 ∈ { 1 , 2 } ) → if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) = if ( 𝑧 = 1 , 2 , 1 ) ) |
| 51 | 50 | mpteq2dva | ⊢ ( 𝑝 ∈ { { 1 , 2 } } → ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) = ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 = 1 , 2 , 1 ) ) ) |
| 52 | 51 | mpteq2ia | ⊢ ( 𝑝 ∈ { { 1 , 2 } } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ( 𝑝 ∈ { { 1 , 2 } } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 = 1 , 2 , 1 ) ) ) |
| 53 | 10 52 | eqtri | ⊢ ( 𝑝 ∈ { 𝑡 ∈ 𝒫 { 1 , 2 } ∣ 𝑡 ≈ 2o } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ( 𝑝 ∈ { { 1 , 2 } } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 = 1 , 2 , 1 ) ) ) |
| 54 | 4 53 | eqtri | ⊢ ( pmTrsp ‘ { 1 , 2 } ) = ( 𝑝 ∈ { { 1 , 2 } } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 = 1 , 2 , 1 ) ) ) |