This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for pmtrdifwrdel . (Contributed by AV, 15-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrdifel.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| pmtrdifel.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | ||
| pmtrdifwrdel.0 | ⊢ 𝑈 = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) ) | ||
| Assertion | pmtrdifwrdellem2 | ⊢ ( 𝑊 ∈ Word 𝑇 → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 2 | pmtrdifel.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | |
| 3 | pmtrdifwrdel.0 | ⊢ 𝑈 = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) ) | |
| 4 | wrdsymbcl | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑥 ) ∈ 𝑇 ) | |
| 5 | eqid | ⊢ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) | |
| 6 | 1 2 5 | pmtrdifellem1 | ⊢ ( ( 𝑊 ‘ 𝑥 ) ∈ 𝑇 → ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) ∈ 𝑅 ) |
| 7 | 4 6 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) ∈ 𝑅 ) |
| 8 | 7 | ralrimiva | ⊢ ( 𝑊 ∈ Word 𝑇 → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) ∈ 𝑅 ) |
| 9 | 3 | fnmpt | ⊢ ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) ∈ 𝑅 → 𝑈 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 10 | hashfn | ⊢ ( 𝑈 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | |
| 11 | 8 9 10 | 3syl | ⊢ ( 𝑊 ∈ Word 𝑇 → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 12 | lencl | ⊢ ( 𝑊 ∈ Word 𝑇 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 13 | hashfzo0 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) = ( ♯ ‘ 𝑊 ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝑊 ∈ Word 𝑇 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
| 15 | 11 14 | eqtr2d | ⊢ ( 𝑊 ∈ Word 𝑇 → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) |