This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set not moving the special element. (Contributed by AV, 31-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrdifel.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| pmtrdifel.r | |- R = ran ( pmTrsp ` N ) |
||
| Assertion | pmtrdifwrdel2 | |- ( K e. N -> A. w e. Word T E. u e. Word R ( ( # ` w ) = ( # ` u ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( u ` i ) ` K ) = K /\ A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| 2 | pmtrdifel.r | |- R = ran ( pmTrsp ` N ) |
|
| 3 | fveq2 | |- ( j = n -> ( w ` j ) = ( w ` n ) ) |
|
| 4 | 3 | difeq1d | |- ( j = n -> ( ( w ` j ) \ _I ) = ( ( w ` n ) \ _I ) ) |
| 5 | 4 | dmeqd | |- ( j = n -> dom ( ( w ` j ) \ _I ) = dom ( ( w ` n ) \ _I ) ) |
| 6 | 5 | fveq2d | |- ( j = n -> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( w ` n ) \ _I ) ) ) |
| 7 | 6 | cbvmptv | |- ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) = ( n e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` n ) \ _I ) ) ) |
| 8 | 1 2 7 | pmtrdifwrdellem1 | |- ( w e. Word T -> ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) e. Word R ) |
| 9 | 8 | adantl | |- ( ( K e. N /\ w e. Word T ) -> ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) e. Word R ) |
| 10 | 1 2 7 | pmtrdifwrdellem2 | |- ( w e. Word T -> ( # ` w ) = ( # ` ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ) ) |
| 11 | 10 | adantl | |- ( ( K e. N /\ w e. Word T ) -> ( # ` w ) = ( # ` ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ) ) |
| 12 | 1 2 7 | pmtrdifwrdel2lem1 | |- ( ( w e. Word T /\ K e. N ) -> A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` K ) = K ) |
| 13 | 12 | ancoms | |- ( ( K e. N /\ w e. Word T ) -> A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` K ) = K ) |
| 14 | 1 2 7 | pmtrdifwrdellem3 | |- ( w e. Word T -> A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) |
| 15 | 14 | adantl | |- ( ( K e. N /\ w e. Word T ) -> A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) |
| 16 | r19.26 | |- ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` K ) = K /\ A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) <-> ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` K ) = K /\ A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) ) |
|
| 17 | 13 15 16 | sylanbrc | |- ( ( K e. N /\ w e. Word T ) -> A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` K ) = K /\ A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) ) |
| 18 | fveq2 | |- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( # ` u ) = ( # ` ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ) ) |
|
| 19 | 18 | eqeq2d | |- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( ( # ` w ) = ( # ` u ) <-> ( # ` w ) = ( # ` ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ) ) ) |
| 20 | fveq1 | |- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( u ` i ) = ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ) |
|
| 21 | 20 | fveq1d | |- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( ( u ` i ) ` K ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` K ) ) |
| 22 | 21 | eqeq1d | |- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( ( ( u ` i ) ` K ) = K <-> ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` K ) = K ) ) |
| 23 | 20 | fveq1d | |- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( ( u ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) |
| 24 | 23 | eqeq2d | |- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) <-> ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) ) |
| 25 | 24 | ralbidv | |- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) <-> A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) ) |
| 26 | 22 25 | anbi12d | |- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( ( ( ( u ` i ) ` K ) = K /\ A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) ) <-> ( ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` K ) = K /\ A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) ) ) |
| 27 | 26 | ralbidv | |- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( u ` i ) ` K ) = K /\ A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) ) <-> A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` K ) = K /\ A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) ) ) |
| 28 | 19 27 | anbi12d | |- ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( ( ( # ` w ) = ( # ` u ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( u ` i ) ` K ) = K /\ A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) ) ) <-> ( ( # ` w ) = ( # ` ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` K ) = K /\ A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) ) ) ) |
| 29 | 28 | rspcev | |- ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) e. Word R /\ ( ( # ` w ) = ( # ` ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` K ) = K /\ A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) ) ) -> E. u e. Word R ( ( # ` w ) = ( # ` u ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( u ` i ) ` K ) = K /\ A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) ) ) ) |
| 30 | 9 11 17 29 | syl12anc | |- ( ( K e. N /\ w e. Word T ) -> E. u e. Word R ( ( # ` w ) = ( # ` u ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( u ` i ) ` K ) = K /\ A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) ) ) ) |
| 31 | 30 | ralrimiva | |- ( K e. N -> A. w e. Word T E. u e. Word R ( ( # ` w ) = ( # ` u ) /\ A. i e. ( 0 ..^ ( # ` w ) ) ( ( ( u ` i ) ` K ) = K /\ A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) ) ) ) |