This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for pmtrdifwrdel . (Contributed by AV, 15-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrdifel.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| pmtrdifel.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | ||
| pmtrdifwrdel.0 | ⊢ 𝑈 = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) ) | ||
| Assertion | pmtrdifwrdellem3 | ⊢ ( 𝑊 ∈ Word 𝑇 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 2 | pmtrdifel.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | |
| 3 | pmtrdifwrdel.0 | ⊢ 𝑈 = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) ) | |
| 4 | wrdsymbcl | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑖 ) ∈ 𝑇 ) | |
| 5 | eqid | ⊢ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) | |
| 6 | 1 2 5 | pmtrdifellem3 | ⊢ ( ( 𝑊 ‘ 𝑖 ) ∈ 𝑇 → ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ‘ 𝑛 ) ) |
| 7 | 4 6 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ‘ 𝑛 ) ) |
| 8 | fveq2 | ⊢ ( 𝑥 = 𝑖 → ( 𝑊 ‘ 𝑥 ) = ( 𝑊 ‘ 𝑖 ) ) | |
| 9 | 8 | difeq1d | ⊢ ( 𝑥 = 𝑖 → ( ( 𝑊 ‘ 𝑥 ) ∖ I ) = ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) |
| 10 | 9 | dmeqd | ⊢ ( 𝑥 = 𝑖 → dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) = dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) |
| 11 | 10 | fveq2d | ⊢ ( 𝑥 = 𝑖 → ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ) |
| 12 | simpr | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 13 | fvexd | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ∈ V ) | |
| 14 | 3 11 12 13 | fvmptd3 | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑈 ‘ 𝑖 ) = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ) |
| 15 | 14 | fveq1d | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ‘ 𝑛 ) ) |
| 16 | 15 | eqeq2d | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ‘ 𝑛 ) ) ) |
| 17 | 16 | ralbidv | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ‘ 𝑛 ) ) ) |
| 18 | 7 17 | mpbird | ⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 19 | 18 | ralrimiva | ⊢ ( 𝑊 ∈ Word 𝑇 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) |