This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for pmtrdifel . (Contributed by AV, 15-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrdifel.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| pmtrdifel.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | ||
| pmtrdifel.0 | ⊢ 𝑆 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑄 ∖ I ) ) | ||
| Assertion | pmtrdifellem3 | ⊢ ( 𝑄 ∈ 𝑇 → ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | ⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 2 | pmtrdifel.r | ⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) | |
| 3 | pmtrdifel.0 | ⊢ 𝑆 = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( 𝑄 ∖ I ) ) | |
| 4 | 1 2 3 | pmtrdifellem2 | ⊢ ( 𝑄 ∈ 𝑇 → dom ( 𝑆 ∖ I ) = dom ( 𝑄 ∖ I ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → dom ( 𝑆 ∖ I ) = dom ( 𝑄 ∖ I ) ) |
| 6 | 5 | eleq2d | ⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑥 ∈ dom ( 𝑆 ∖ I ) ↔ 𝑥 ∈ dom ( 𝑄 ∖ I ) ) ) |
| 7 | 4 | difeq1d | ⊢ ( 𝑄 ∈ 𝑇 → ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) = ( dom ( 𝑄 ∖ I ) ∖ { 𝑥 } ) ) |
| 8 | 7 | unieqd | ⊢ ( 𝑄 ∈ 𝑇 → ∪ ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) = ∪ ( dom ( 𝑄 ∖ I ) ∖ { 𝑥 } ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ∪ ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) = ∪ ( dom ( 𝑄 ∖ I ) ∖ { 𝑥 } ) ) |
| 10 | 6 9 | ifbieq1d | ⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → if ( 𝑥 ∈ dom ( 𝑆 ∖ I ) , ∪ ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) = if ( 𝑥 ∈ dom ( 𝑄 ∖ I ) , ∪ ( dom ( 𝑄 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) ) |
| 11 | 1 2 3 | pmtrdifellem1 | ⊢ ( 𝑄 ∈ 𝑇 → 𝑆 ∈ 𝑅 ) |
| 12 | eldifi | ⊢ ( 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) → 𝑥 ∈ 𝑁 ) | |
| 13 | eqid | ⊢ ( pmTrsp ‘ 𝑁 ) = ( pmTrsp ‘ 𝑁 ) | |
| 14 | eqid | ⊢ dom ( 𝑆 ∖ I ) = dom ( 𝑆 ∖ I ) | |
| 15 | 13 2 14 | pmtrffv | ⊢ ( ( 𝑆 ∈ 𝑅 ∧ 𝑥 ∈ 𝑁 ) → ( 𝑆 ‘ 𝑥 ) = if ( 𝑥 ∈ dom ( 𝑆 ∖ I ) , ∪ ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) ) |
| 16 | 11 12 15 | syl2an | ⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑆 ‘ 𝑥 ) = if ( 𝑥 ∈ dom ( 𝑆 ∖ I ) , ∪ ( dom ( 𝑆 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) ) |
| 17 | eqid | ⊢ ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) = ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) | |
| 18 | eqid | ⊢ dom ( 𝑄 ∖ I ) = dom ( 𝑄 ∖ I ) | |
| 19 | 17 1 18 | pmtrffv | ⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑄 ‘ 𝑥 ) = if ( 𝑥 ∈ dom ( 𝑄 ∖ I ) , ∪ ( dom ( 𝑄 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) ) |
| 20 | 10 16 19 | 3eqtr4rd | ⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑄 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 21 | 20 | ralrimiva | ⊢ ( 𝑄 ∈ 𝑇 → ∀ 𝑥 ∈ ( 𝑁 ∖ { 𝐾 } ) ( 𝑄 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |