This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for pmtrdifel . (Contributed by AV, 15-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrdifel.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| pmtrdifel.r | |- R = ran ( pmTrsp ` N ) |
||
| pmtrdifel.0 | |- S = ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) |
||
| Assertion | pmtrdifellem3 | |- ( Q e. T -> A. x e. ( N \ { K } ) ( Q ` x ) = ( S ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| 2 | pmtrdifel.r | |- R = ran ( pmTrsp ` N ) |
|
| 3 | pmtrdifel.0 | |- S = ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) |
|
| 4 | 1 2 3 | pmtrdifellem2 | |- ( Q e. T -> dom ( S \ _I ) = dom ( Q \ _I ) ) |
| 5 | 4 | adantr | |- ( ( Q e. T /\ x e. ( N \ { K } ) ) -> dom ( S \ _I ) = dom ( Q \ _I ) ) |
| 6 | 5 | eleq2d | |- ( ( Q e. T /\ x e. ( N \ { K } ) ) -> ( x e. dom ( S \ _I ) <-> x e. dom ( Q \ _I ) ) ) |
| 7 | 4 | difeq1d | |- ( Q e. T -> ( dom ( S \ _I ) \ { x } ) = ( dom ( Q \ _I ) \ { x } ) ) |
| 8 | 7 | unieqd | |- ( Q e. T -> U. ( dom ( S \ _I ) \ { x } ) = U. ( dom ( Q \ _I ) \ { x } ) ) |
| 9 | 8 | adantr | |- ( ( Q e. T /\ x e. ( N \ { K } ) ) -> U. ( dom ( S \ _I ) \ { x } ) = U. ( dom ( Q \ _I ) \ { x } ) ) |
| 10 | 6 9 | ifbieq1d | |- ( ( Q e. T /\ x e. ( N \ { K } ) ) -> if ( x e. dom ( S \ _I ) , U. ( dom ( S \ _I ) \ { x } ) , x ) = if ( x e. dom ( Q \ _I ) , U. ( dom ( Q \ _I ) \ { x } ) , x ) ) |
| 11 | 1 2 3 | pmtrdifellem1 | |- ( Q e. T -> S e. R ) |
| 12 | eldifi | |- ( x e. ( N \ { K } ) -> x e. N ) |
|
| 13 | eqid | |- ( pmTrsp ` N ) = ( pmTrsp ` N ) |
|
| 14 | eqid | |- dom ( S \ _I ) = dom ( S \ _I ) |
|
| 15 | 13 2 14 | pmtrffv | |- ( ( S e. R /\ x e. N ) -> ( S ` x ) = if ( x e. dom ( S \ _I ) , U. ( dom ( S \ _I ) \ { x } ) , x ) ) |
| 16 | 11 12 15 | syl2an | |- ( ( Q e. T /\ x e. ( N \ { K } ) ) -> ( S ` x ) = if ( x e. dom ( S \ _I ) , U. ( dom ( S \ _I ) \ { x } ) , x ) ) |
| 17 | eqid | |- ( pmTrsp ` ( N \ { K } ) ) = ( pmTrsp ` ( N \ { K } ) ) |
|
| 18 | eqid | |- dom ( Q \ _I ) = dom ( Q \ _I ) |
|
| 19 | 17 1 18 | pmtrffv | |- ( ( Q e. T /\ x e. ( N \ { K } ) ) -> ( Q ` x ) = if ( x e. dom ( Q \ _I ) , U. ( dom ( Q \ _I ) \ { x } ) , x ) ) |
| 20 | 10 16 19 | 3eqtr4rd | |- ( ( Q e. T /\ x e. ( N \ { K } ) ) -> ( Q ` x ) = ( S ` x ) ) |
| 21 | 20 | ralrimiva | |- ( Q e. T -> A. x e. ( N \ { K } ) ( Q ` x ) = ( S ` x ) ) |