This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the difference of a class and a singleton is a set, the class itself is a set. (Contributed by AV, 15-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difsnexi | ⊢ ( ( 𝑁 ∖ { 𝐾 } ) ∈ V → 𝑁 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝑁 ∖ { 𝐾 } ) ∈ V ) → ( 𝑁 ∖ { 𝐾 } ) ∈ V ) | |
| 2 | snex | ⊢ { 𝐾 } ∈ V | |
| 3 | unexg | ⊢ ( ( ( 𝑁 ∖ { 𝐾 } ) ∈ V ∧ { 𝐾 } ∈ V ) → ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∈ V ) | |
| 4 | 1 2 3 | sylancl | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝑁 ∖ { 𝐾 } ) ∈ V ) → ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∈ V ) |
| 5 | difsnid | ⊢ ( 𝐾 ∈ 𝑁 → ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) = 𝑁 ) | |
| 6 | 5 | eqcomd | ⊢ ( 𝐾 ∈ 𝑁 → 𝑁 = ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ) |
| 7 | 6 | eleq1d | ⊢ ( 𝐾 ∈ 𝑁 → ( 𝑁 ∈ V ↔ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∈ V ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝑁 ∖ { 𝐾 } ) ∈ V ) → ( 𝑁 ∈ V ↔ ( ( 𝑁 ∖ { 𝐾 } ) ∪ { 𝐾 } ) ∈ V ) ) |
| 9 | 4 8 | mpbird | ⊢ ( ( 𝐾 ∈ 𝑁 ∧ ( 𝑁 ∖ { 𝐾 } ) ∈ V ) → 𝑁 ∈ V ) |
| 10 | 9 | ex | ⊢ ( 𝐾 ∈ 𝑁 → ( ( 𝑁 ∖ { 𝐾 } ) ∈ V → 𝑁 ∈ V ) ) |
| 11 | difsn | ⊢ ( ¬ 𝐾 ∈ 𝑁 → ( 𝑁 ∖ { 𝐾 } ) = 𝑁 ) | |
| 12 | 11 | eleq1d | ⊢ ( ¬ 𝐾 ∈ 𝑁 → ( ( 𝑁 ∖ { 𝐾 } ) ∈ V ↔ 𝑁 ∈ V ) ) |
| 13 | 12 | biimpd | ⊢ ( ¬ 𝐾 ∈ 𝑁 → ( ( 𝑁 ∖ { 𝐾 } ) ∈ V → 𝑁 ∈ V ) ) |
| 14 | 10 13 | pm2.61i | ⊢ ( ( 𝑁 ∖ { 𝐾 } ) ∈ V → 𝑁 ∈ V ) |