This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for pmtrdifel . (Contributed by AV, 15-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrdifel.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| pmtrdifel.r | |- R = ran ( pmTrsp ` N ) |
||
| pmtrdifel.0 | |- S = ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) |
||
| Assertion | pmtrdifellem1 | |- ( Q e. T -> S e. R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| 2 | pmtrdifel.r | |- R = ran ( pmTrsp ` N ) |
|
| 3 | pmtrdifel.0 | |- S = ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) |
|
| 4 | eqid | |- ( pmTrsp ` ( N \ { K } ) ) = ( pmTrsp ` ( N \ { K } ) ) |
|
| 5 | 4 1 | pmtrfb | |- ( Q e. T <-> ( ( N \ { K } ) e. _V /\ Q : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) /\ dom ( Q \ _I ) ~~ 2o ) ) |
| 6 | difsnexi | |- ( ( N \ { K } ) e. _V -> N e. _V ) |
|
| 7 | f1of | |- ( Q : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) -> Q : ( N \ { K } ) --> ( N \ { K } ) ) |
|
| 8 | fdm | |- ( Q : ( N \ { K } ) --> ( N \ { K } ) -> dom Q = ( N \ { K } ) ) |
|
| 9 | difssd | |- ( dom Q = ( N \ { K } ) -> ( Q \ _I ) C_ Q ) |
|
| 10 | dmss | |- ( ( Q \ _I ) C_ Q -> dom ( Q \ _I ) C_ dom Q ) |
|
| 11 | 9 10 | syl | |- ( dom Q = ( N \ { K } ) -> dom ( Q \ _I ) C_ dom Q ) |
| 12 | difssd | |- ( dom Q = ( N \ { K } ) -> ( N \ { K } ) C_ N ) |
|
| 13 | sseq1 | |- ( dom Q = ( N \ { K } ) -> ( dom Q C_ N <-> ( N \ { K } ) C_ N ) ) |
|
| 14 | 12 13 | mpbird | |- ( dom Q = ( N \ { K } ) -> dom Q C_ N ) |
| 15 | 11 14 | sstrd | |- ( dom Q = ( N \ { K } ) -> dom ( Q \ _I ) C_ N ) |
| 16 | 7 8 15 | 3syl | |- ( Q : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) -> dom ( Q \ _I ) C_ N ) |
| 17 | id | |- ( dom ( Q \ _I ) ~~ 2o -> dom ( Q \ _I ) ~~ 2o ) |
|
| 18 | eqid | |- ( pmTrsp ` N ) = ( pmTrsp ` N ) |
|
| 19 | 18 2 | pmtrrn | |- ( ( N e. _V /\ dom ( Q \ _I ) C_ N /\ dom ( Q \ _I ) ~~ 2o ) -> ( ( pmTrsp ` N ) ` dom ( Q \ _I ) ) e. R ) |
| 20 | 3 19 | eqeltrid | |- ( ( N e. _V /\ dom ( Q \ _I ) C_ N /\ dom ( Q \ _I ) ~~ 2o ) -> S e. R ) |
| 21 | 6 16 17 20 | syl3an | |- ( ( ( N \ { K } ) e. _V /\ Q : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) /\ dom ( Q \ _I ) ~~ 2o ) -> S e. R ) |
| 22 | 5 21 | sylbi | |- ( Q e. T -> S e. R ) |