This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of the join of a lattice element and a lattice line (expressed as the join Q .\/ R of two atoms). (Contributed by NM, 16-Sep-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapjat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pmapjat.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| pmapjat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| pmapjat.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| pmapjat.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | pmapjlln1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ ( 𝑋 ∨ ( 𝑄 ∨ 𝑅 ) ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ ( 𝑄 ∨ 𝑅 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapjat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pmapjat.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | pmapjat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | pmapjat.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 5 | pmapjat.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 6 | simpl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) | |
| 7 | 1 3 4 | pmapssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) |
| 8 | 7 | 3ad2antr1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ) |
| 9 | simpr2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) | |
| 10 | 1 3 | atbase | ⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 11 | 9 10 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐵 ) |
| 12 | 1 3 4 | pmapssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) |
| 13 | 11 12 | syldan | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ) |
| 14 | simpr3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑅 ∈ 𝐴 ) | |
| 15 | 1 3 | atbase | ⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵 ) |
| 16 | 14 15 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑅 ∈ 𝐵 ) |
| 17 | 1 3 4 | pmapssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑅 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑅 ) ⊆ 𝐴 ) |
| 18 | 16 17 | syldan | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ 𝑅 ) ⊆ 𝐴 ) |
| 19 | 3 5 | paddass | ⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑀 ‘ 𝑋 ) ⊆ 𝐴 ∧ ( 𝑀 ‘ 𝑄 ) ⊆ 𝐴 ∧ ( 𝑀 ‘ 𝑅 ) ⊆ 𝐴 ) ) → ( ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) + ( 𝑀 ‘ 𝑅 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑅 ) ) ) ) |
| 20 | 6 8 13 18 19 | syl13anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) + ( 𝑀 ‘ 𝑅 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑅 ) ) ) ) |
| 21 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
| 23 | simpr1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑋 ∈ 𝐵 ) | |
| 24 | 1 2 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
| 25 | 22 23 11 24 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
| 26 | 1 2 3 4 5 | pmapjat1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑀 ‘ ( ( 𝑋 ∨ 𝑄 ) ∨ 𝑅 ) ) = ( ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) + ( 𝑀 ‘ 𝑅 ) ) ) |
| 27 | 6 25 14 26 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ ( ( 𝑋 ∨ 𝑄 ) ∨ 𝑅 ) ) = ( ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) + ( 𝑀 ‘ 𝑅 ) ) ) |
| 28 | 1 2 | latjass | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ 𝑅 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑄 ) ∨ 𝑅 ) = ( 𝑋 ∨ ( 𝑄 ∨ 𝑅 ) ) ) |
| 29 | 22 23 11 16 28 | syl13anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝑋 ∨ 𝑄 ) ∨ 𝑅 ) = ( 𝑋 ∨ ( 𝑄 ∨ 𝑅 ) ) ) |
| 30 | 29 | fveq2d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ ( ( 𝑋 ∨ 𝑄 ) ∨ 𝑅 ) ) = ( 𝑀 ‘ ( 𝑋 ∨ ( 𝑄 ∨ 𝑅 ) ) ) ) |
| 31 | 1 2 3 4 5 | pmapjat1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
| 32 | 31 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) ) |
| 33 | 32 | oveq1d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝑀 ‘ ( 𝑋 ∨ 𝑄 ) ) + ( 𝑀 ‘ 𝑅 ) ) = ( ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) + ( 𝑀 ‘ 𝑅 ) ) ) |
| 34 | 27 30 33 | 3eqtr3d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ ( 𝑋 ∨ ( 𝑄 ∨ 𝑅 ) ) ) = ( ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ 𝑄 ) ) + ( 𝑀 ‘ 𝑅 ) ) ) |
| 35 | 1 2 3 4 5 | pmapjat1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑀 ‘ ( 𝑄 ∨ 𝑅 ) ) = ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑅 ) ) ) |
| 36 | 6 11 14 35 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ ( 𝑄 ∨ 𝑅 ) ) = ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑅 ) ) ) |
| 37 | 36 | oveq2d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ ( 𝑄 ∨ 𝑅 ) ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( ( 𝑀 ‘ 𝑄 ) + ( 𝑀 ‘ 𝑅 ) ) ) ) |
| 38 | 20 34 37 | 3eqtr4d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑀 ‘ ( 𝑋 ∨ ( 𝑄 ∨ 𝑅 ) ) ) = ( ( 𝑀 ‘ 𝑋 ) + ( 𝑀 ‘ ( 𝑄 ∨ 𝑅 ) ) ) ) |