This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projective subspace sum is associative. Equation 16.2.1 of MaedaMaeda p. 68. In our version, the subspaces do not have to be nonempty. (Contributed by NM, 29-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddass.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| paddass.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | paddass | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddass.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | paddass.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 3 | simpl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝐾 ∈ HL ) | |
| 4 | simpr3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑍 ⊆ 𝐴 ) | |
| 5 | simpr2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑌 ⊆ 𝐴 ) | |
| 6 | simpr1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑋 ⊆ 𝐴 ) | |
| 7 | 1 2 | paddasslem18 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴 ) ) → ( 𝑍 + ( 𝑌 + 𝑋 ) ) ⊆ ( ( 𝑍 + 𝑌 ) + 𝑋 ) ) |
| 8 | 3 4 5 6 7 | syl13anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑍 + ( 𝑌 + 𝑋 ) ) ⊆ ( ( 𝑍 + 𝑌 ) + 𝑋 ) ) |
| 9 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 10 | 1 2 | paddcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 11 | 9 10 | syl3an1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 12 | 11 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 13 | 12 | oveq1d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑌 + 𝑋 ) + 𝑍 ) ) |
| 14 | 1 2 | paddssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑌 + 𝑋 ) ⊆ 𝐴 ) |
| 15 | 3 5 6 14 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑌 + 𝑋 ) ⊆ 𝐴 ) |
| 16 | 1 2 | paddcom | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑌 + 𝑋 ) ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( ( 𝑌 + 𝑋 ) + 𝑍 ) = ( 𝑍 + ( 𝑌 + 𝑋 ) ) ) |
| 17 | 9 16 | syl3an1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑌 + 𝑋 ) ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( ( 𝑌 + 𝑋 ) + 𝑍 ) = ( 𝑍 + ( 𝑌 + 𝑋 ) ) ) |
| 18 | 3 15 4 17 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑌 + 𝑋 ) + 𝑍 ) = ( 𝑍 + ( 𝑌 + 𝑋 ) ) ) |
| 19 | 13 18 | eqtrd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑍 + ( 𝑌 + 𝑋 ) ) ) |
| 20 | 1 2 | paddcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( 𝑌 + 𝑍 ) = ( 𝑍 + 𝑌 ) ) |
| 21 | 9 20 | syl3an1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( 𝑌 + 𝑍 ) = ( 𝑍 + 𝑌 ) ) |
| 22 | 21 | 3adant3r1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑌 + 𝑍 ) = ( 𝑍 + 𝑌 ) ) |
| 23 | 22 | oveq2d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑋 + ( 𝑍 + 𝑌 ) ) ) |
| 24 | 1 2 | paddssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑍 + 𝑌 ) ⊆ 𝐴 ) |
| 25 | 3 4 5 24 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑍 + 𝑌 ) ⊆ 𝐴 ) |
| 26 | 1 2 | paddcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ ( 𝑍 + 𝑌 ) ⊆ 𝐴 ) → ( 𝑋 + ( 𝑍 + 𝑌 ) ) = ( ( 𝑍 + 𝑌 ) + 𝑋 ) ) |
| 27 | 9 26 | syl3an1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ ( 𝑍 + 𝑌 ) ⊆ 𝐴 ) → ( 𝑋 + ( 𝑍 + 𝑌 ) ) = ( ( 𝑍 + 𝑌 ) + 𝑋 ) ) |
| 28 | 3 6 25 27 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ( 𝑍 + 𝑌 ) ) = ( ( 𝑍 + 𝑌 ) + 𝑋 ) ) |
| 29 | 23 28 | eqtrd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( ( 𝑍 + 𝑌 ) + 𝑋 ) ) |
| 30 | 8 19 29 | 3sstr4d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) ⊆ ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |
| 31 | 1 2 | paddasslem18 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( 𝑋 + ( 𝑌 + 𝑍 ) ) ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |
| 32 | 30 31 | eqssd | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |