This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of the join of a lattice element and a lattice line (expressed as the join Q .\/ R of two atoms). (Contributed by NM, 16-Sep-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapjat.b | |- B = ( Base ` K ) |
|
| pmapjat.j | |- .\/ = ( join ` K ) |
||
| pmapjat.a | |- A = ( Atoms ` K ) |
||
| pmapjat.m | |- M = ( pmap ` K ) |
||
| pmapjat.p | |- .+ = ( +P ` K ) |
||
| Assertion | pmapjlln1 | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( X .\/ ( Q .\/ R ) ) ) = ( ( M ` X ) .+ ( M ` ( Q .\/ R ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapjat.b | |- B = ( Base ` K ) |
|
| 2 | pmapjat.j | |- .\/ = ( join ` K ) |
|
| 3 | pmapjat.a | |- A = ( Atoms ` K ) |
|
| 4 | pmapjat.m | |- M = ( pmap ` K ) |
|
| 5 | pmapjat.p | |- .+ = ( +P ` K ) |
|
| 6 | simpl | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> K e. HL ) |
|
| 7 | 1 3 4 | pmapssat | |- ( ( K e. HL /\ X e. B ) -> ( M ` X ) C_ A ) |
| 8 | 7 | 3ad2antr1 | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` X ) C_ A ) |
| 9 | simpr2 | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> Q e. A ) |
|
| 10 | 1 3 | atbase | |- ( Q e. A -> Q e. B ) |
| 11 | 9 10 | syl | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> Q e. B ) |
| 12 | 1 3 4 | pmapssat | |- ( ( K e. HL /\ Q e. B ) -> ( M ` Q ) C_ A ) |
| 13 | 11 12 | syldan | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` Q ) C_ A ) |
| 14 | simpr3 | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> R e. A ) |
|
| 15 | 1 3 | atbase | |- ( R e. A -> R e. B ) |
| 16 | 14 15 | syl | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> R e. B ) |
| 17 | 1 3 4 | pmapssat | |- ( ( K e. HL /\ R e. B ) -> ( M ` R ) C_ A ) |
| 18 | 16 17 | syldan | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` R ) C_ A ) |
| 19 | 3 5 | paddass | |- ( ( K e. HL /\ ( ( M ` X ) C_ A /\ ( M ` Q ) C_ A /\ ( M ` R ) C_ A ) ) -> ( ( ( M ` X ) .+ ( M ` Q ) ) .+ ( M ` R ) ) = ( ( M ` X ) .+ ( ( M ` Q ) .+ ( M ` R ) ) ) ) |
| 20 | 6 8 13 18 19 | syl13anc | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( ( ( M ` X ) .+ ( M ` Q ) ) .+ ( M ` R ) ) = ( ( M ` X ) .+ ( ( M ` Q ) .+ ( M ` R ) ) ) ) |
| 21 | hllat | |- ( K e. HL -> K e. Lat ) |
|
| 22 | 21 | adantr | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> K e. Lat ) |
| 23 | simpr1 | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> X e. B ) |
|
| 24 | 1 2 | latjcl | |- ( ( K e. Lat /\ X e. B /\ Q e. B ) -> ( X .\/ Q ) e. B ) |
| 25 | 22 23 11 24 | syl3anc | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( X .\/ Q ) e. B ) |
| 26 | 1 2 3 4 5 | pmapjat1 | |- ( ( K e. HL /\ ( X .\/ Q ) e. B /\ R e. A ) -> ( M ` ( ( X .\/ Q ) .\/ R ) ) = ( ( M ` ( X .\/ Q ) ) .+ ( M ` R ) ) ) |
| 27 | 6 25 14 26 | syl3anc | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( ( X .\/ Q ) .\/ R ) ) = ( ( M ` ( X .\/ Q ) ) .+ ( M ` R ) ) ) |
| 28 | 1 2 | latjass | |- ( ( K e. Lat /\ ( X e. B /\ Q e. B /\ R e. B ) ) -> ( ( X .\/ Q ) .\/ R ) = ( X .\/ ( Q .\/ R ) ) ) |
| 29 | 22 23 11 16 28 | syl13anc | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( ( X .\/ Q ) .\/ R ) = ( X .\/ ( Q .\/ R ) ) ) |
| 30 | 29 | fveq2d | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( ( X .\/ Q ) .\/ R ) ) = ( M ` ( X .\/ ( Q .\/ R ) ) ) ) |
| 31 | 1 2 3 4 5 | pmapjat1 | |- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` ( X .\/ Q ) ) = ( ( M ` X ) .+ ( M ` Q ) ) ) |
| 32 | 31 | 3adant3r3 | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( X .\/ Q ) ) = ( ( M ` X ) .+ ( M ` Q ) ) ) |
| 33 | 32 | oveq1d | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( ( M ` ( X .\/ Q ) ) .+ ( M ` R ) ) = ( ( ( M ` X ) .+ ( M ` Q ) ) .+ ( M ` R ) ) ) |
| 34 | 27 30 33 | 3eqtr3d | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( X .\/ ( Q .\/ R ) ) ) = ( ( ( M ` X ) .+ ( M ` Q ) ) .+ ( M ` R ) ) ) |
| 35 | 1 2 3 4 5 | pmapjat1 | |- ( ( K e. HL /\ Q e. B /\ R e. A ) -> ( M ` ( Q .\/ R ) ) = ( ( M ` Q ) .+ ( M ` R ) ) ) |
| 36 | 6 11 14 35 | syl3anc | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( Q .\/ R ) ) = ( ( M ` Q ) .+ ( M ` R ) ) ) |
| 37 | 36 | oveq2d | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( ( M ` X ) .+ ( M ` ( Q .\/ R ) ) ) = ( ( M ` X ) .+ ( ( M ` Q ) .+ ( M ` R ) ) ) ) |
| 38 | 20 34 37 | 3eqtr4d | |- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( X .\/ ( Q .\/ R ) ) ) = ( ( M ` X ) .+ ( M ` ( Q .\/ R ) ) ) ) |