This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb2N , where we read S as S ( i ) . Extension of Theorem 15.5.2 of MaedaMaeda p. 62 that allows I = (/) . (Contributed by NM, 21-Jan-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapglb2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pmapglb2.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| pmapglb2.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| pmapglb2.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | pmapglb2xN | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapglb2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pmapglb2.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 3 | pmapglb2.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | pmapglb2.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 5 | hlop | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) | |
| 6 | eqid | ⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) | |
| 7 | 2 6 | glb0N | ⊢ ( 𝐾 ∈ OP → ( 𝐺 ‘ ∅ ) = ( 1. ‘ 𝐾 ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = ( 𝑀 ‘ ( 1. ‘ 𝐾 ) ) ) |
| 9 | 6 3 4 | pmap1N | ⊢ ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 1. ‘ 𝐾 ) ) = 𝐴 ) |
| 10 | 8 9 | eqtrd | ⊢ ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 ) |
| 11 | 5 10 | syl | ⊢ ( 𝐾 ∈ HL → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 ) |
| 12 | rexeq | ⊢ ( 𝐼 = ∅ → ( ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 ↔ ∃ 𝑖 ∈ ∅ 𝑦 = 𝑆 ) ) | |
| 13 | 12 | abbidv | ⊢ ( 𝐼 = ∅ → { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } = { 𝑦 ∣ ∃ 𝑖 ∈ ∅ 𝑦 = 𝑆 } ) |
| 14 | rex0 | ⊢ ¬ ∃ 𝑖 ∈ ∅ 𝑦 = 𝑆 | |
| 15 | 14 | abf | ⊢ { 𝑦 ∣ ∃ 𝑖 ∈ ∅ 𝑦 = 𝑆 } = ∅ |
| 16 | 13 15 | eqtrdi | ⊢ ( 𝐼 = ∅ → { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } = ∅ ) |
| 17 | 16 | fveq2d | ⊢ ( 𝐼 = ∅ → ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) = ( 𝐺 ‘ ∅ ) ) |
| 18 | 17 | fveq2d | ⊢ ( 𝐼 = ∅ → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) ) |
| 19 | riin0 | ⊢ ( 𝐼 = ∅ → ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) = 𝐴 ) | |
| 20 | 18 19 | eqeq12d | ⊢ ( 𝐼 = ∅ → ( ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) ↔ ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 ) ) |
| 21 | 11 20 | syl5ibrcom | ⊢ ( 𝐾 ∈ HL → ( 𝐼 = ∅ → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) → ( 𝐼 = ∅ → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) ) ) |
| 23 | 1 2 4 | pmapglbx | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) |
| 24 | nfv | ⊢ Ⅎ 𝑖 𝐾 ∈ HL | |
| 25 | nfra1 | ⊢ Ⅎ 𝑖 ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 | |
| 26 | 24 25 | nfan | ⊢ Ⅎ 𝑖 ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) |
| 27 | simpr | ⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) | |
| 28 | simpll | ⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝐼 ) → 𝐾 ∈ HL ) | |
| 29 | rspa | ⊢ ( ( ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝑖 ∈ 𝐼 ) → 𝑆 ∈ 𝐵 ) | |
| 30 | 29 | adantll | ⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝐼 ) → 𝑆 ∈ 𝐵 ) |
| 31 | 1 3 4 | pmapssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) |
| 32 | 28 30 31 | syl2anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) |
| 33 | 27 32 | jca | ⊢ ( ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑖 ∈ 𝐼 ∧ ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) ) |
| 34 | 33 | ex | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) → ( 𝑖 ∈ 𝐼 → ( 𝑖 ∈ 𝐼 ∧ ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) ) ) |
| 35 | 26 34 | eximd | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) → ( ∃ 𝑖 𝑖 ∈ 𝐼 → ∃ 𝑖 ( 𝑖 ∈ 𝐼 ∧ ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) ) ) |
| 36 | n0 | ⊢ ( 𝐼 ≠ ∅ ↔ ∃ 𝑖 𝑖 ∈ 𝐼 ) | |
| 37 | df-rex | ⊢ ( ∃ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ↔ ∃ 𝑖 ( 𝑖 ∈ 𝐼 ∧ ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) ) | |
| 38 | 35 36 37 | 3imtr4g | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) → ( 𝐼 ≠ ∅ → ∃ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) ) |
| 39 | 38 | 3impia | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ∃ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) |
| 40 | iinss | ⊢ ( ∃ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 → ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ) |
| 42 | sseqin2 | ⊢ ( ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ⊆ 𝐴 ↔ ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) = ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) | |
| 43 | 41 42 | sylib | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) = ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) |
| 44 | 23 43 | eqtr4d | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) ) |
| 45 | 44 | 3expia | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) → ( 𝐼 ≠ ∅ → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) ) ) |
| 46 | 22 45 | pm2.61dne | ⊢ ( ( 𝐾 ∈ HL ∧ ∀ 𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ) → ( 𝑀 ‘ ( 𝐺 ‘ { 𝑦 ∣ ∃ 𝑖 ∈ 𝐼 𝑦 = 𝑆 } ) ) = ( 𝐴 ∩ ∩ 𝑖 ∈ 𝐼 ( 𝑀 ‘ 𝑆 ) ) ) |