This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the projective map of a Hilbert lattice at lattice unity. Part of Theorem 15.5.1 of MaedaMaeda p. 62. (Contributed by NM, 22-Oct-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmap1.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | |
| pmap1.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| pmap1.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | pmap1N | ⊢ ( 𝐾 ∈ OP → ( 𝑀 ‘ 1 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmap1.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | |
| 2 | pmap1.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 3 | pmap1.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 5 | 4 1 | op1cl | ⊢ ( 𝐾 ∈ OP → 1 ∈ ( Base ‘ 𝐾 ) ) |
| 6 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 7 | 4 6 2 3 | pmapval | ⊢ ( ( 𝐾 ∈ OP ∧ 1 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑀 ‘ 1 ) = { 𝑝 ∈ 𝐴 ∣ 𝑝 ( le ‘ 𝐾 ) 1 } ) |
| 8 | 5 7 | mpdan | ⊢ ( 𝐾 ∈ OP → ( 𝑀 ‘ 1 ) = { 𝑝 ∈ 𝐴 ∣ 𝑝 ( le ‘ 𝐾 ) 1 } ) |
| 9 | 4 2 | atbase | ⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
| 10 | 4 6 1 | ople1 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑝 ∈ ( Base ‘ 𝐾 ) ) → 𝑝 ( le ‘ 𝐾 ) 1 ) |
| 11 | 9 10 | sylan2 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ( le ‘ 𝐾 ) 1 ) |
| 12 | 11 | ralrimiva | ⊢ ( 𝐾 ∈ OP → ∀ 𝑝 ∈ 𝐴 𝑝 ( le ‘ 𝐾 ) 1 ) |
| 13 | rabid2 | ⊢ ( 𝐴 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ( le ‘ 𝐾 ) 1 } ↔ ∀ 𝑝 ∈ 𝐴 𝑝 ( le ‘ 𝐾 ) 1 ) | |
| 14 | 12 13 | sylibr | ⊢ ( 𝐾 ∈ OP → 𝐴 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ( le ‘ 𝐾 ) 1 } ) |
| 15 | 8 14 | eqtr4d | ⊢ ( 𝐾 ∈ OP → ( 𝑀 ‘ 1 ) = 𝐴 ) |