This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb2N , where we read S as S ( i ) . Extension of Theorem 15.5.2 of MaedaMaeda p. 62 that allows I = (/) . (Contributed by NM, 21-Jan-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapglb2.b | |- B = ( Base ` K ) |
|
| pmapglb2.g | |- G = ( glb ` K ) |
||
| pmapglb2.a | |- A = ( Atoms ` K ) |
||
| pmapglb2.m | |- M = ( pmap ` K ) |
||
| Assertion | pmapglb2xN | |- ( ( K e. HL /\ A. i e. I S e. B ) -> ( M ` ( G ` { y | E. i e. I y = S } ) ) = ( A i^i |^|_ i e. I ( M ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapglb2.b | |- B = ( Base ` K ) |
|
| 2 | pmapglb2.g | |- G = ( glb ` K ) |
|
| 3 | pmapglb2.a | |- A = ( Atoms ` K ) |
|
| 4 | pmapglb2.m | |- M = ( pmap ` K ) |
|
| 5 | hlop | |- ( K e. HL -> K e. OP ) |
|
| 6 | eqid | |- ( 1. ` K ) = ( 1. ` K ) |
|
| 7 | 2 6 | glb0N | |- ( K e. OP -> ( G ` (/) ) = ( 1. ` K ) ) |
| 8 | 7 | fveq2d | |- ( K e. OP -> ( M ` ( G ` (/) ) ) = ( M ` ( 1. ` K ) ) ) |
| 9 | 6 3 4 | pmap1N | |- ( K e. OP -> ( M ` ( 1. ` K ) ) = A ) |
| 10 | 8 9 | eqtrd | |- ( K e. OP -> ( M ` ( G ` (/) ) ) = A ) |
| 11 | 5 10 | syl | |- ( K e. HL -> ( M ` ( G ` (/) ) ) = A ) |
| 12 | rexeq | |- ( I = (/) -> ( E. i e. I y = S <-> E. i e. (/) y = S ) ) |
|
| 13 | 12 | abbidv | |- ( I = (/) -> { y | E. i e. I y = S } = { y | E. i e. (/) y = S } ) |
| 14 | rex0 | |- -. E. i e. (/) y = S |
|
| 15 | 14 | abf | |- { y | E. i e. (/) y = S } = (/) |
| 16 | 13 15 | eqtrdi | |- ( I = (/) -> { y | E. i e. I y = S } = (/) ) |
| 17 | 16 | fveq2d | |- ( I = (/) -> ( G ` { y | E. i e. I y = S } ) = ( G ` (/) ) ) |
| 18 | 17 | fveq2d | |- ( I = (/) -> ( M ` ( G ` { y | E. i e. I y = S } ) ) = ( M ` ( G ` (/) ) ) ) |
| 19 | riin0 | |- ( I = (/) -> ( A i^i |^|_ i e. I ( M ` S ) ) = A ) |
|
| 20 | 18 19 | eqeq12d | |- ( I = (/) -> ( ( M ` ( G ` { y | E. i e. I y = S } ) ) = ( A i^i |^|_ i e. I ( M ` S ) ) <-> ( M ` ( G ` (/) ) ) = A ) ) |
| 21 | 11 20 | syl5ibrcom | |- ( K e. HL -> ( I = (/) -> ( M ` ( G ` { y | E. i e. I y = S } ) ) = ( A i^i |^|_ i e. I ( M ` S ) ) ) ) |
| 22 | 21 | adantr | |- ( ( K e. HL /\ A. i e. I S e. B ) -> ( I = (/) -> ( M ` ( G ` { y | E. i e. I y = S } ) ) = ( A i^i |^|_ i e. I ( M ` S ) ) ) ) |
| 23 | 1 2 4 | pmapglbx | |- ( ( K e. HL /\ A. i e. I S e. B /\ I =/= (/) ) -> ( M ` ( G ` { y | E. i e. I y = S } ) ) = |^|_ i e. I ( M ` S ) ) |
| 24 | nfv | |- F/ i K e. HL |
|
| 25 | nfra1 | |- F/ i A. i e. I S e. B |
|
| 26 | 24 25 | nfan | |- F/ i ( K e. HL /\ A. i e. I S e. B ) |
| 27 | simpr | |- ( ( ( K e. HL /\ A. i e. I S e. B ) /\ i e. I ) -> i e. I ) |
|
| 28 | simpll | |- ( ( ( K e. HL /\ A. i e. I S e. B ) /\ i e. I ) -> K e. HL ) |
|
| 29 | rspa | |- ( ( A. i e. I S e. B /\ i e. I ) -> S e. B ) |
|
| 30 | 29 | adantll | |- ( ( ( K e. HL /\ A. i e. I S e. B ) /\ i e. I ) -> S e. B ) |
| 31 | 1 3 4 | pmapssat | |- ( ( K e. HL /\ S e. B ) -> ( M ` S ) C_ A ) |
| 32 | 28 30 31 | syl2anc | |- ( ( ( K e. HL /\ A. i e. I S e. B ) /\ i e. I ) -> ( M ` S ) C_ A ) |
| 33 | 27 32 | jca | |- ( ( ( K e. HL /\ A. i e. I S e. B ) /\ i e. I ) -> ( i e. I /\ ( M ` S ) C_ A ) ) |
| 34 | 33 | ex | |- ( ( K e. HL /\ A. i e. I S e. B ) -> ( i e. I -> ( i e. I /\ ( M ` S ) C_ A ) ) ) |
| 35 | 26 34 | eximd | |- ( ( K e. HL /\ A. i e. I S e. B ) -> ( E. i i e. I -> E. i ( i e. I /\ ( M ` S ) C_ A ) ) ) |
| 36 | n0 | |- ( I =/= (/) <-> E. i i e. I ) |
|
| 37 | df-rex | |- ( E. i e. I ( M ` S ) C_ A <-> E. i ( i e. I /\ ( M ` S ) C_ A ) ) |
|
| 38 | 35 36 37 | 3imtr4g | |- ( ( K e. HL /\ A. i e. I S e. B ) -> ( I =/= (/) -> E. i e. I ( M ` S ) C_ A ) ) |
| 39 | 38 | 3impia | |- ( ( K e. HL /\ A. i e. I S e. B /\ I =/= (/) ) -> E. i e. I ( M ` S ) C_ A ) |
| 40 | iinss | |- ( E. i e. I ( M ` S ) C_ A -> |^|_ i e. I ( M ` S ) C_ A ) |
|
| 41 | 39 40 | syl | |- ( ( K e. HL /\ A. i e. I S e. B /\ I =/= (/) ) -> |^|_ i e. I ( M ` S ) C_ A ) |
| 42 | sseqin2 | |- ( |^|_ i e. I ( M ` S ) C_ A <-> ( A i^i |^|_ i e. I ( M ` S ) ) = |^|_ i e. I ( M ` S ) ) |
|
| 43 | 41 42 | sylib | |- ( ( K e. HL /\ A. i e. I S e. B /\ I =/= (/) ) -> ( A i^i |^|_ i e. I ( M ` S ) ) = |^|_ i e. I ( M ` S ) ) |
| 44 | 23 43 | eqtr4d | |- ( ( K e. HL /\ A. i e. I S e. B /\ I =/= (/) ) -> ( M ` ( G ` { y | E. i e. I y = S } ) ) = ( A i^i |^|_ i e. I ( M ` S ) ) ) |
| 45 | 44 | 3expia | |- ( ( K e. HL /\ A. i e. I S e. B ) -> ( I =/= (/) -> ( M ` ( G ` { y | E. i e. I y = S } ) ) = ( A i^i |^|_ i e. I ( M ` S ) ) ) ) |
| 46 | 22 45 | pm2.61dne | |- ( ( K e. HL /\ A. i e. I S e. B ) -> ( M ` ( G ` { y | E. i e. I y = S } ) ) = ( A i^i |^|_ i e. I ( M ` S ) ) ) |