This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The greatest lower bound of the empty set is the unity element. (Contributed by NM, 5-Dec-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | glb0.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| glb0.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | ||
| Assertion | glb0N | ⊢ ( 𝐾 ∈ OP → ( 𝐺 ‘ ∅ ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | glb0.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 2 | glb0.u | ⊢ 1 = ( 1. ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 5 | biid | ⊢ ( ( ∀ 𝑦 ∈ ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ↔ ( ∀ 𝑦 ∈ ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) | |
| 6 | id | ⊢ ( 𝐾 ∈ OP → 𝐾 ∈ OP ) | |
| 7 | 0ss | ⊢ ∅ ⊆ ( Base ‘ 𝐾 ) | |
| 8 | 7 | a1i | ⊢ ( 𝐾 ∈ OP → ∅ ⊆ ( Base ‘ 𝐾 ) ) |
| 9 | 3 4 1 5 6 8 | glbval | ⊢ ( 𝐾 ∈ OP → ( 𝐺 ‘ ∅ ) = ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) ) |
| 10 | 3 2 | op1cl | ⊢ ( 𝐾 ∈ OP → 1 ∈ ( Base ‘ 𝐾 ) ) |
| 11 | ral0 | ⊢ ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 | |
| 12 | 11 | a1bi | ⊢ ( 𝑧 ( le ‘ 𝐾 ) 𝑥 ↔ ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 13 | 12 | ralbii | ⊢ ( ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥 ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 14 | ral0 | ⊢ ∀ 𝑦 ∈ ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦 | |
| 15 | 14 | biantrur | ⊢ ( ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ↔ ( ∀ 𝑦 ∈ ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) |
| 16 | 13 15 | bitri | ⊢ ( ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥 ↔ ( ∀ 𝑦 ∈ ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) |
| 17 | 10 | adantr | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → 1 ∈ ( Base ‘ 𝐾 ) ) |
| 18 | breq1 | ⊢ ( 𝑧 = 1 → ( 𝑧 ( le ‘ 𝐾 ) 𝑥 ↔ 1 ( le ‘ 𝐾 ) 𝑥 ) ) | |
| 19 | 18 | rspcv | ⊢ ( 1 ∈ ( Base ‘ 𝐾 ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥 → 1 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 20 | 17 19 | syl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥 → 1 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 21 | 3 4 2 | op1le | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 1 ( le ‘ 𝐾 ) 𝑥 ↔ 𝑥 = 1 ) ) |
| 22 | 20 21 | sylibd | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥 → 𝑥 = 1 ) ) |
| 23 | 3 4 2 | ople1 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → 𝑧 ( le ‘ 𝐾 ) 1 ) |
| 24 | 23 | adantlr | ⊢ ( ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → 𝑧 ( le ‘ 𝐾 ) 1 ) |
| 25 | 24 | ex | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑧 ∈ ( Base ‘ 𝐾 ) → 𝑧 ( le ‘ 𝐾 ) 1 ) ) |
| 26 | breq2 | ⊢ ( 𝑥 = 1 → ( 𝑧 ( le ‘ 𝐾 ) 𝑥 ↔ 𝑧 ( le ‘ 𝐾 ) 1 ) ) | |
| 27 | 26 | biimprcd | ⊢ ( 𝑧 ( le ‘ 𝐾 ) 1 → ( 𝑥 = 1 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 28 | 25 27 | syl6 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑧 ∈ ( Base ‘ 𝐾 ) → ( 𝑥 = 1 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) |
| 29 | 28 | com23 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑥 = 1 → ( 𝑧 ∈ ( Base ‘ 𝐾 ) → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) |
| 30 | 29 | ralrimdv | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑥 = 1 → ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 31 | 22 30 | impbid | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) 𝑧 ( le ‘ 𝐾 ) 𝑥 ↔ 𝑥 = 1 ) ) |
| 32 | 16 31 | bitr3id | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ ( Base ‘ 𝐾 ) ) → ( ( ∀ 𝑦 ∈ ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ↔ 𝑥 = 1 ) ) |
| 33 | 10 32 | riota5 | ⊢ ( 𝐾 ∈ OP → ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( ∀ 𝑦 ∈ ∅ 𝑧 ( le ‘ 𝐾 ) 𝑦 → 𝑧 ( le ‘ 𝐾 ) 𝑥 ) ) ) = 1 ) |
| 34 | 9 33 | eqtrd | ⊢ ( 𝐾 ∈ OP → ( 𝐺 ‘ ∅ ) = 1 ) |