This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of the GLB of a set of lattice elements S . Variant of Theorem 15.5.2 of MaedaMaeda p. 62. Allows S = (/) . (Contributed by NM, 21-Jan-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapglb2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pmapglb2.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| pmapglb2.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| pmapglb2.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | pmapglb2N | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapglb2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pmapglb2.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 3 | pmapglb2.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | pmapglb2.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 5 | hlop | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) | |
| 6 | eqid | ⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) | |
| 7 | 2 6 | glb0N | ⊢ ( 𝐾 ∈ OP → ( 𝐺 ‘ ∅ ) = ( 1. ‘ 𝐾 ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = ( 𝑀 ‘ ( 1. ‘ 𝐾 ) ) ) |
| 9 | 6 3 4 | pmap1N | ⊢ ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 1. ‘ 𝐾 ) ) = 𝐴 ) |
| 10 | 8 9 | eqtrd | ⊢ ( 𝐾 ∈ OP → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 ) |
| 11 | 5 10 | syl | ⊢ ( 𝐾 ∈ HL → ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 ) |
| 12 | 2fveq3 | ⊢ ( 𝑆 = ∅ → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) ) | |
| 13 | riin0 | ⊢ ( 𝑆 = ∅ → ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) = 𝐴 ) | |
| 14 | 12 13 | eqeq12d | ⊢ ( 𝑆 = ∅ → ( ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) ↔ ( 𝑀 ‘ ( 𝐺 ‘ ∅ ) ) = 𝐴 ) ) |
| 15 | 11 14 | syl5ibrcom | ⊢ ( 𝐾 ∈ HL → ( 𝑆 = ∅ → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑆 = ∅ → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) ) ) |
| 17 | 1 2 4 | pmapglb | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) |
| 18 | simpr | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) | |
| 19 | simpll | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐾 ∈ HL ) | |
| 20 | ssel2 | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) | |
| 21 | 20 | adantll | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 22 | 1 3 4 | pmapssat | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑥 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) |
| 23 | 19 21 22 | syl2anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) |
| 24 | 18 23 | jca | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ 𝑆 ∧ ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) ) |
| 25 | 24 | ex | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑥 ∈ 𝑆 → ( 𝑥 ∈ 𝑆 ∧ ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 26 | 25 | eximdv | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) → ( ∃ 𝑥 𝑥 ∈ 𝑆 → ∃ 𝑥 ( 𝑥 ∈ 𝑆 ∧ ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) ) ) |
| 27 | n0 | ⊢ ( 𝑆 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑆 ) | |
| 28 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑆 ∧ ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) ) | |
| 29 | 26 27 28 | 3imtr4g | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑆 ≠ ∅ → ∃ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) ) |
| 30 | 29 | 3impia | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) |
| 31 | iinss | ⊢ ( ∃ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 → ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) | |
| 32 | 30 31 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) → ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ) |
| 33 | sseqin2 | ⊢ ( ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ⊆ 𝐴 ↔ ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) = ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) | |
| 34 | 32 33 | sylib | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) → ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) = ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) |
| 35 | 17 34 | eqtr4d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ) → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) ) |
| 36 | 35 | 3expia | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑆 ≠ ∅ → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) ) ) |
| 37 | 16 36 | pm2.61dne | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑀 ‘ ( 𝐺 ‘ 𝑆 ) ) = ( 𝐴 ∩ ∩ 𝑥 ∈ 𝑆 ( 𝑀 ‘ 𝑥 ) ) ) |