This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The decomposition of a univariate polynomial is finitely supported. Formerly part of proof for ply1coe . (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 8-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1coefsupp.p | |- P = ( Poly1 ` R ) |
|
| ply1coefsupp.x | |- X = ( var1 ` R ) |
||
| ply1coefsupp.b | |- B = ( Base ` P ) |
||
| ply1coefsupp.n | |- .x. = ( .s ` P ) |
||
| ply1coefsupp.m | |- M = ( mulGrp ` P ) |
||
| ply1coefsupp.e | |- .^ = ( .g ` M ) |
||
| ply1coefsupp.a | |- A = ( coe1 ` K ) |
||
| Assertion | ply1coefsupp | |- ( ( R e. Ring /\ K e. B ) -> ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) finSupp ( 0g ` P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1coefsupp.p | |- P = ( Poly1 ` R ) |
|
| 2 | ply1coefsupp.x | |- X = ( var1 ` R ) |
|
| 3 | ply1coefsupp.b | |- B = ( Base ` P ) |
|
| 4 | ply1coefsupp.n | |- .x. = ( .s ` P ) |
|
| 5 | ply1coefsupp.m | |- M = ( mulGrp ` P ) |
|
| 6 | ply1coefsupp.e | |- .^ = ( .g ` M ) |
|
| 7 | ply1coefsupp.a | |- A = ( coe1 ` K ) |
|
| 8 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 9 | 1 | ply1lmod | |- ( R e. Ring -> P e. LMod ) |
| 10 | 9 | adantr | |- ( ( R e. Ring /\ K e. B ) -> P e. LMod ) |
| 11 | nn0ex | |- NN0 e. _V |
|
| 12 | 11 | a1i | |- ( ( R e. Ring /\ K e. B ) -> NN0 e. _V ) |
| 13 | 5 3 | mgpbas | |- B = ( Base ` M ) |
| 14 | 1 | ply1ring | |- ( R e. Ring -> P e. Ring ) |
| 15 | 5 | ringmgp | |- ( P e. Ring -> M e. Mnd ) |
| 16 | 14 15 | syl | |- ( R e. Ring -> M e. Mnd ) |
| 17 | 16 | ad2antrr | |- ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> M e. Mnd ) |
| 18 | simpr | |- ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> k e. NN0 ) |
|
| 19 | 2 1 3 | vr1cl | |- ( R e. Ring -> X e. B ) |
| 20 | 19 | ad2antrr | |- ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> X e. B ) |
| 21 | 13 6 17 18 20 | mulgnn0cld | |- ( ( ( R e. Ring /\ K e. B ) /\ k e. NN0 ) -> ( k .^ X ) e. B ) |
| 22 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 23 | 7 3 1 22 | coe1f | |- ( K e. B -> A : NN0 --> ( Base ` R ) ) |
| 24 | 23 | adantl | |- ( ( R e. Ring /\ K e. B ) -> A : NN0 --> ( Base ` R ) ) |
| 25 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 26 | 7 3 1 25 | coe1sfi | |- ( K e. B -> A finSupp ( 0g ` R ) ) |
| 27 | 26 | adantl | |- ( ( R e. Ring /\ K e. B ) -> A finSupp ( 0g ` R ) ) |
| 28 | 1 | ply1sca | |- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 29 | 28 | eqcomd | |- ( R e. Ring -> ( Scalar ` P ) = R ) |
| 30 | 29 | adantr | |- ( ( R e. Ring /\ K e. B ) -> ( Scalar ` P ) = R ) |
| 31 | 30 | fveq2d | |- ( ( R e. Ring /\ K e. B ) -> ( 0g ` ( Scalar ` P ) ) = ( 0g ` R ) ) |
| 32 | 27 31 | breqtrrd | |- ( ( R e. Ring /\ K e. B ) -> A finSupp ( 0g ` ( Scalar ` P ) ) ) |
| 33 | 3 8 4 10 12 21 24 32 | mptscmfsuppd | |- ( ( R e. Ring /\ K e. B ) -> ( k e. NN0 |-> ( ( A ` k ) .x. ( k .^ X ) ) ) finSupp ( 0g ` P ) ) |