This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The decomposition of a univariate polynomial is finitely supported. Formerly part of proof for ply1coe . (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by AV, 8-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1coefsupp.p | ||
| ply1coefsupp.x | |||
| ply1coefsupp.b | |||
| ply1coefsupp.n | |||
| ply1coefsupp.m | |||
| ply1coefsupp.e | |||
| ply1coefsupp.a | |||
| Assertion | ply1coefsupp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1coefsupp.p | ||
| 2 | ply1coefsupp.x | ||
| 3 | ply1coefsupp.b | ||
| 4 | ply1coefsupp.n | ||
| 5 | ply1coefsupp.m | ||
| 6 | ply1coefsupp.e | ||
| 7 | ply1coefsupp.a | ||
| 8 | eqid | ||
| 9 | 1 | ply1lmod | |
| 10 | 9 | adantr | |
| 11 | nn0ex | ||
| 12 | 11 | a1i | |
| 13 | 5 3 | mgpbas | |
| 14 | 1 | ply1ring | |
| 15 | 5 | ringmgp | |
| 16 | 14 15 | syl | |
| 17 | 16 | ad2antrr | |
| 18 | simpr | ||
| 19 | 2 1 3 | vr1cl | |
| 20 | 19 | ad2antrr | |
| 21 | 13 6 17 18 20 | mulgnn0cld | |
| 22 | eqid | ||
| 23 | 7 3 1 22 | coe1f | |
| 24 | 23 | adantl | |
| 25 | eqid | ||
| 26 | 7 3 1 25 | coe1sfi | |
| 27 | 26 | adantl | |
| 28 | 1 | ply1sca | |
| 29 | 28 | eqcomd | |
| 30 | 29 | adantr | |
| 31 | 30 | fveq2d | |
| 32 | 27 31 | breqtrrd | |
| 33 | 3 8 4 10 12 21 24 32 | mptscmfsuppd |