This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hilbert lattice one (which is all of Hilbert space) belongs to the Hilbert lattice. Part of Proposition 1 of Kalmbach p. 65. (Contributed by NM, 6-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | helch | ⊢ ℋ ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ ℋ ⊆ ℋ | |
| 2 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 3 | 1 2 | pm3.2i | ⊢ ( ℋ ⊆ ℋ ∧ 0ℎ ∈ ℋ ) |
| 4 | hvaddcl | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ) | |
| 5 | 4 | rgen2 | ⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 +ℎ 𝑦 ) ∈ ℋ |
| 6 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) | |
| 7 | 6 | rgen2 | ⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ |
| 8 | 5 7 | pm3.2i | ⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
| 9 | issh2 | ⊢ ( ℋ ∈ Sℋ ↔ ( ( ℋ ⊆ ℋ ∧ 0ℎ ∈ ℋ ) ∧ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) ) ) | |
| 10 | 3 8 9 | mpbir2an | ⊢ ℋ ∈ Sℋ |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | 11 | hlimveci | ⊢ ( 𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ ℋ ) |
| 13 | 12 | adantl | ⊢ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ℋ ) |
| 14 | 13 | gen2 | ⊢ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ℋ ) |
| 15 | isch2 | ⊢ ( ℋ ∈ Cℋ ↔ ( ℋ ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ ℋ ) ) ) | |
| 16 | 10 14 15 | mpbir2an | ⊢ ℋ ∈ Cℋ |