This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of a vector from itself. (Contributed by NM, 30-May-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubid | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 𝐴 ) = 0ℎ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hvmulid | ⊢ ( 𝐴 ∈ ℋ → ( 1 ·ℎ 𝐴 ) = 𝐴 ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝐴 ∈ ℋ → ( ( 1 ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐴 ) ) ) |
| 3 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 4 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 5 | ax-hvdistr2 | ⊢ ( ( 1 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 1 + - 1 ) ·ℎ 𝐴 ) = ( ( 1 ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) ) | |
| 6 | 3 4 5 | mp3an12 | ⊢ ( 𝐴 ∈ ℋ → ( ( 1 + - 1 ) ·ℎ 𝐴 ) = ( ( 1 ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) ) |
| 7 | hvsubval | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 −ℎ 𝐴 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐴 ) ) ) | |
| 8 | 7 | anidms | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 𝐴 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐴 ) ) ) |
| 9 | 2 6 8 | 3eqtr4rd | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 𝐴 ) = ( ( 1 + - 1 ) ·ℎ 𝐴 ) ) |
| 10 | 1pneg1e0 | ⊢ ( 1 + - 1 ) = 0 | |
| 11 | 10 | oveq1i | ⊢ ( ( 1 + - 1 ) ·ℎ 𝐴 ) = ( 0 ·ℎ 𝐴 ) |
| 12 | 9 11 | eqtrdi | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 𝐴 ) = ( 0 ·ℎ 𝐴 ) ) |
| 13 | ax-hvmul0 | ⊢ ( 𝐴 ∈ ℋ → ( 0 ·ℎ 𝐴 ) = 0ℎ ) | |
| 14 | 12 13 | eqtrd | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 −ℎ 𝐴 ) = 0ℎ ) |