This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert vector space addition law. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvass.1 | ⊢ 𝐴 ∈ ℋ | |
| hvass.2 | ⊢ 𝐵 ∈ ℋ | ||
| hvass.3 | ⊢ 𝐶 ∈ ℋ | ||
| hvadd4.4 | ⊢ 𝐷 ∈ ℋ | ||
| Assertion | hvsubsub4i | ⊢ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝐶 −ℎ 𝐷 ) ) = ( ( 𝐴 −ℎ 𝐶 ) −ℎ ( 𝐵 −ℎ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvass.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | hvass.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | hvass.3 | ⊢ 𝐶 ∈ ℋ | |
| 4 | hvadd4.4 | ⊢ 𝐷 ∈ ℋ | |
| 5 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 6 | 5 2 | hvmulcli | ⊢ ( - 1 ·ℎ 𝐵 ) ∈ ℋ |
| 7 | 5 3 | hvmulcli | ⊢ ( - 1 ·ℎ 𝐶 ) ∈ ℋ |
| 8 | 5 4 | hvmulcli | ⊢ ( - 1 ·ℎ 𝐷 ) ∈ ℋ |
| 9 | 5 8 | hvmulcli | ⊢ ( - 1 ·ℎ ( - 1 ·ℎ 𝐷 ) ) ∈ ℋ |
| 10 | 1 6 7 9 | hvadd4i | ⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ ( ( - 1 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) +ℎ ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) |
| 11 | 5 3 8 | hvdistr1i | ⊢ ( - 1 ·ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) = ( ( - 1 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐷 ) ) ) |
| 12 | 11 | oveq2i | ⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ ( ( - 1 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) |
| 13 | 5 2 8 | hvdistr1i | ⊢ ( - 1 ·ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐷 ) ) ) |
| 14 | 13 | oveq2i | ⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) +ℎ ( - 1 ·ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) +ℎ ( ( - 1 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) |
| 15 | 10 12 14 | 3eqtr4i | ⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) +ℎ ( - 1 ·ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) |
| 16 | 1 6 | hvaddcli | ⊢ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ∈ ℋ |
| 17 | 3 8 | hvaddcli | ⊢ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ∈ ℋ |
| 18 | 16 17 | hvsubvali | ⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) −ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) |
| 19 | 1 7 | hvaddcli | ⊢ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) ∈ ℋ |
| 20 | 2 8 | hvaddcli | ⊢ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ∈ ℋ |
| 21 | 19 20 | hvsubvali | ⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) −ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) +ℎ ( - 1 ·ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) ) |
| 22 | 15 18 21 | 3eqtr4i | ⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) −ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) −ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) |
| 23 | 1 2 | hvsubvali | ⊢ ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
| 24 | 3 4 | hvsubvali | ⊢ ( 𝐶 −ℎ 𝐷 ) = ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) |
| 25 | 23 24 | oveq12i | ⊢ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝐶 −ℎ 𝐷 ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) −ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) |
| 26 | 1 3 | hvsubvali | ⊢ ( 𝐴 −ℎ 𝐶 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) |
| 27 | 2 4 | hvsubvali | ⊢ ( 𝐵 −ℎ 𝐷 ) = ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) |
| 28 | 26 27 | oveq12i | ⊢ ( ( 𝐴 −ℎ 𝐶 ) −ℎ ( 𝐵 −ℎ 𝐷 ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) −ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐷 ) ) ) |
| 29 | 22 25 28 | 3eqtr4i | ⊢ ( ( 𝐴 −ℎ 𝐵 ) −ℎ ( 𝐶 −ℎ 𝐷 ) ) = ( ( 𝐴 −ℎ 𝐶 ) −ℎ ( 𝐵 −ℎ 𝐷 ) ) |