This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthogonal projection. Lemma 4.4(i) of Beran p. 111. (Contributed by NM, 30-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjo | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjch1 | ⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) = 𝐴 ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) = 𝐴 ) |
| 3 | axpjpj | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) | |
| 4 | 2 3 | eqtr2d | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) |
| 5 | helch | ⊢ ℋ ∈ Cℋ | |
| 6 | 5 | pjcli | ⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ∈ ℋ ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ∈ ℋ ) |
| 8 | pjhcl | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ) | |
| 9 | choccl | ⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ∈ Cℋ ) | |
| 10 | pjhcl | ⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ) | |
| 11 | 9 10 | sylan | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ) |
| 12 | hvsubadd | ⊢ ( ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ) → ( ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ↔ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) ) | |
| 13 | 7 8 11 12 | syl3anc | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ↔ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) ) |
| 14 | 4 13 | mpbird | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
| 15 | 14 | eqcomd | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |