This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of negative over subtraction. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvnegdi.1 | ⊢ 𝐴 ∈ ℋ | |
| hvnegdi.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | hvnegdii | ⊢ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 −ℎ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvnegdi.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | hvnegdi.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | 1 2 | hvsubvali | ⊢ ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
| 4 | 3 | oveq2i | ⊢ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( - 1 ·ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 5 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 6 | 5 2 | hvmulcli | ⊢ ( - 1 ·ℎ 𝐵 ) ∈ ℋ |
| 7 | 5 1 6 | hvdistr1i | ⊢ ( - 1 ·ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( - 1 ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 8 | neg1mulneg1e1 | ⊢ ( - 1 · - 1 ) = 1 | |
| 9 | 8 | oveq1i | ⊢ ( ( - 1 · - 1 ) ·ℎ 𝐵 ) = ( 1 ·ℎ 𝐵 ) |
| 10 | 5 5 2 | hvmulassi | ⊢ ( ( - 1 · - 1 ) ·ℎ 𝐵 ) = ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) |
| 11 | ax-hvmulid | ⊢ ( 𝐵 ∈ ℋ → ( 1 ·ℎ 𝐵 ) = 𝐵 ) | |
| 12 | 2 11 | ax-mp | ⊢ ( 1 ·ℎ 𝐵 ) = 𝐵 |
| 13 | 9 10 12 | 3eqtr3i | ⊢ ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) = 𝐵 |
| 14 | 13 | oveq1i | ⊢ ( ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ ( - 1 ·ℎ 𝐴 ) ) = ( 𝐵 +ℎ ( - 1 ·ℎ 𝐴 ) ) |
| 15 | 5 1 | hvmulcli | ⊢ ( - 1 ·ℎ 𝐴 ) ∈ ℋ |
| 16 | 5 6 | hvmulcli | ⊢ ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) ∈ ℋ |
| 17 | 15 16 | hvcomi | ⊢ ( ( - 1 ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ ( - 1 ·ℎ 𝐴 ) ) |
| 18 | 2 1 | hvsubvali | ⊢ ( 𝐵 −ℎ 𝐴 ) = ( 𝐵 +ℎ ( - 1 ·ℎ 𝐴 ) ) |
| 19 | 14 17 18 | 3eqtr4i | ⊢ ( ( - 1 ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐵 −ℎ 𝐴 ) |
| 20 | 4 7 19 | 3eqtri | ⊢ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 −ℎ 𝐴 ) |