This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decomposition of a vector into projections. This formulation of axpjpj avoids pjhth . (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjpjpre.1 | ⊢ ( 𝜑 → 𝐻 ∈ Cℋ ) | |
| pjpjpre.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) | ||
| Assertion | pjpjpre | ⊢ ( 𝜑 → 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjpjpre.1 | ⊢ ( 𝜑 → 𝐻 ∈ Cℋ ) | |
| 2 | pjpjpre.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) | |
| 3 | chsh | ⊢ ( 𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → 𝐻 ∈ Sℋ ) |
| 5 | shocsh | ⊢ ( 𝐻 ∈ Sℋ → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) |
| 7 | shsel | ⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) → ( 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) | |
| 8 | 4 6 7 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) |
| 9 | 2 8 | mpbid | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |
| 10 | simprr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) | |
| 11 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝑥 ∈ 𝐻 ) | |
| 12 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) | |
| 13 | rspe | ⊢ ( ( 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) → ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) | |
| 14 | 12 10 13 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) |
| 15 | pjpreeq | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝑥 ↔ ( 𝑥 ∈ 𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) ) | |
| 16 | 1 2 15 | syl2anc | ⊢ ( 𝜑 → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝑥 ↔ ( 𝑥 ∈ 𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝑥 ↔ ( 𝑥 ∈ 𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) ) |
| 18 | 11 14 17 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝑥 ) |
| 19 | shococss | ⊢ ( 𝐻 ∈ Sℋ → 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) | |
| 20 | 4 19 | syl | ⊢ ( 𝜑 → 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) |
| 22 | 21 11 | sseldd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) |
| 23 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝐻 ∈ Cℋ ) |
| 24 | 23 3 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝐻 ∈ Sℋ ) |
| 25 | shel | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝑥 ∈ 𝐻 ) → 𝑥 ∈ ℋ ) | |
| 26 | 24 11 25 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝑥 ∈ ℋ ) |
| 27 | 24 5 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) |
| 28 | shel | ⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Sℋ ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝑦 ∈ ℋ ) | |
| 29 | 27 12 28 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝑦 ∈ ℋ ) |
| 30 | ax-hvcom | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑦 +ℎ 𝑥 ) ) | |
| 31 | 26 29 30 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑦 +ℎ 𝑥 ) ) |
| 32 | 10 31 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) |
| 33 | rspe | ⊢ ( ( 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) → ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) | |
| 34 | 22 32 33 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) |
| 35 | choccl | ⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ∈ Cℋ ) | |
| 36 | 1 35 | syl | ⊢ ( 𝜑 → ( ⊥ ‘ 𝐻 ) ∈ Cℋ ) |
| 37 | shocsh | ⊢ ( ( ⊥ ‘ 𝐻 ) ∈ Sℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ∈ Sℋ ) | |
| 38 | 6 37 | syl | ⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ∈ Sℋ ) |
| 39 | shless | ⊢ ( ( ( 𝐻 ∈ Sℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ∈ Sℋ ∧ ( ⊥ ‘ 𝐻 ) ∈ Sℋ ) ∧ 𝐻 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ⊆ ( ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) +ℋ ( ⊥ ‘ 𝐻 ) ) ) | |
| 40 | 4 38 6 20 39 | syl31anc | ⊢ ( 𝜑 → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ⊆ ( ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) +ℋ ( ⊥ ‘ 𝐻 ) ) ) |
| 41 | shscom | ⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Sℋ ∧ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ∈ Sℋ ) → ( ( ⊥ ‘ 𝐻 ) +ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) +ℋ ( ⊥ ‘ 𝐻 ) ) ) | |
| 42 | 6 38 41 | syl2anc | ⊢ ( 𝜑 → ( ( ⊥ ‘ 𝐻 ) +ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) +ℋ ( ⊥ ‘ 𝐻 ) ) ) |
| 43 | 40 42 | sseqtrrd | ⊢ ( 𝜑 → ( 𝐻 +ℋ ( ⊥ ‘ 𝐻 ) ) ⊆ ( ( ⊥ ‘ 𝐻 ) +ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) ) |
| 44 | 43 2 | sseldd | ⊢ ( 𝜑 → 𝐴 ∈ ( ( ⊥ ‘ 𝐻 ) +ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) ) |
| 45 | pjpreeq | ⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ ∧ 𝐴 ∈ ( ( ⊥ ‘ 𝐻 ) +ℋ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 𝑦 ↔ ( 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∧ ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) ) | |
| 46 | 36 44 45 | syl2anc | ⊢ ( 𝜑 → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 𝑦 ↔ ( 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∧ ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) ) |
| 47 | 46 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 𝑦 ↔ ( 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ∧ ∃ 𝑥 ∈ ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴 = ( 𝑦 +ℎ 𝑥 ) ) ) ) |
| 48 | 12 34 47 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 𝑦 ) |
| 49 | 18 48 | oveq12d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( 𝑥 +ℎ 𝑦 ) ) |
| 50 | 10 49 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) ∧ 𝐴 = ( 𝑥 +ℎ 𝑦 ) ) ) → 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
| 51 | 50 | exp32 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐴 = ( 𝑥 +ℎ 𝑦 ) → 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ) ) |
| 52 | 51 | rexlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐻 ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 +ℎ 𝑦 ) → 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ) |
| 53 | 9 52 | mpd | ⊢ ( 𝜑 → 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |