This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. Analogous to opth , this theorem shows a way of representing a pair of vectors. (Contributed by NM, 5-Jul-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgdisj.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| subgdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| subgdisj.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| subgdisj.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| subgdisj.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | ||
| subgdisj.i | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | ||
| subgdisj.s | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | ||
| subgdisj.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑇 ) | ||
| subgdisj.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) | ||
| subgdisj.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) | ||
| subgdisj.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) | ||
| Assertion | subgdisjb | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgdisj.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 2 | subgdisj.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | subgdisj.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 4 | subgdisj.t | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | subgdisj.u | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | subgdisj.i | ⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) | |
| 7 | subgdisj.s | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | |
| 8 | subgdisj.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑇 ) | |
| 9 | subgdisj.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) | |
| 10 | subgdisj.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) | |
| 11 | subgdisj.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) | |
| 12 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 13 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 14 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 15 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
| 16 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝐴 ∈ 𝑇 ) |
| 17 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝐶 ∈ 𝑇 ) |
| 18 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝐵 ∈ 𝑈 ) |
| 19 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝐷 ∈ 𝑈 ) |
| 20 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) | |
| 21 | 1 2 3 12 13 14 15 16 17 18 19 20 | subgdisj1 | ⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝐴 = 𝐶 ) |
| 22 | 1 2 3 12 13 14 15 16 17 18 19 20 | subgdisj2 | ⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → 𝐵 = 𝐷 ) |
| 23 | 21 22 | jca | ⊢ ( ( 𝜑 ∧ ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 24 | 23 | ex | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 25 | oveq12 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ) | |
| 26 | 24 25 | impbid1 | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) = ( 𝐶 + 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |