This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for phibnd . (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phibndlem | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ⊆ ( 1 ... ( 𝑁 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ ) | |
| 2 | fzm1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑥 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑥 = 𝑁 ) ) ) | |
| 3 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 4 | 2 3 | eleq2s | ⊢ ( 𝑁 ∈ ℕ → ( 𝑥 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑥 = 𝑁 ) ) ) |
| 5 | 4 | biimpa | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∨ 𝑥 = 𝑁 ) ) |
| 6 | 5 | ord | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ¬ 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑥 = 𝑁 ) ) |
| 7 | 1 6 | sylan | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ¬ 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑥 = 𝑁 ) ) |
| 8 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℤ ) | |
| 9 | gcdid | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 gcd 𝑁 ) = ( abs ‘ 𝑁 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 gcd 𝑁 ) = ( abs ‘ 𝑁 ) ) |
| 11 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 12 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 13 | 12 | nn0ge0d | ⊢ ( 𝑁 ∈ ℕ → 0 ≤ 𝑁 ) |
| 14 | 11 13 | absidd | ⊢ ( 𝑁 ∈ ℕ → ( abs ‘ 𝑁 ) = 𝑁 ) |
| 15 | 1 14 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( abs ‘ 𝑁 ) = 𝑁 ) |
| 16 | 10 15 | eqtrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 gcd 𝑁 ) = 𝑁 ) |
| 17 | 1re | ⊢ 1 ∈ ℝ | |
| 18 | eluz2gt1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑁 ) | |
| 19 | ltne | ⊢ ( ( 1 ∈ ℝ ∧ 1 < 𝑁 ) → 𝑁 ≠ 1 ) | |
| 20 | 17 18 19 | sylancr | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ≠ 1 ) |
| 21 | 16 20 | eqnetrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 gcd 𝑁 ) ≠ 1 ) |
| 22 | oveq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 gcd 𝑁 ) = ( 𝑁 gcd 𝑁 ) ) | |
| 23 | 22 | neeq1d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 gcd 𝑁 ) ≠ 1 ↔ ( 𝑁 gcd 𝑁 ) ≠ 1 ) ) |
| 24 | 21 23 | syl5ibrcom | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑥 = 𝑁 → ( 𝑥 gcd 𝑁 ) ≠ 1 ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 = 𝑁 → ( 𝑥 gcd 𝑁 ) ≠ 1 ) ) |
| 26 | 7 25 | syld | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ¬ 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑥 gcd 𝑁 ) ≠ 1 ) ) |
| 27 | 26 | necon4bd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑥 gcd 𝑁 ) = 1 → 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
| 28 | 27 | ralrimiva | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ∀ 𝑥 ∈ ( 1 ... 𝑁 ) ( ( 𝑥 gcd 𝑁 ) = 1 → 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) |
| 29 | rabss | ⊢ ( { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ⊆ ( 1 ... ( 𝑁 − 1 ) ) ↔ ∀ 𝑥 ∈ ( 1 ... 𝑁 ) ( ( 𝑥 gcd 𝑁 ) = 1 → 𝑥 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) ) | |
| 30 | 28 29 | sylibr | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → { 𝑥 ∈ ( 1 ... 𝑁 ) ∣ ( 𝑥 gcd 𝑁 ) = 1 } ⊆ ( 1 ... ( 𝑁 − 1 ) ) ) |