This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A perfect space is a topology which has no open singletons. (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | isperf3 | ⊢ ( 𝐽 ∈ Perf ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | isperf2 | ⊢ ( 𝐽 ∈ Perf ↔ ( 𝐽 ∈ Top ∧ 𝑋 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) ) |
| 3 | dfss3 | ⊢ ( 𝑋 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) | |
| 4 | 1 | maxlp | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ¬ { 𝑥 } ∈ 𝐽 ) ) ) |
| 5 | 4 | baibd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ↔ ¬ { 𝑥 } ∈ 𝐽 ) ) |
| 6 | 5 | ralbidva | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑥 ∈ 𝑋 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ) ) |
| 7 | 3 6 | bitrid | ⊢ ( 𝐽 ∈ Top → ( 𝑋 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ) ) |
| 8 | 7 | pm5.32i | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑋 ) ) ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ) ) |
| 9 | 2 8 | bitri | ⊢ ( 𝐽 ∈ Perf ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ¬ { 𝑥 } ∈ 𝐽 ) ) |