This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a perfect space is perfect iff its closure is perfect (and the closure is an actual perfect set, since it is both closed and perfect in the subspace topology). (Contributed by Mario Carneiro, 26-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpcls.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | perfcls | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Perf ↔ ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ Perf ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpcls.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | lpcls | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 3 | 2 | sseq2d | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 4 | t1top | ⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ Top ) | |
| 5 | 1 | clslp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 6 | 4 5 | sylan | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 7 | 6 | sseq1d | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 8 | ssequn1 | ⊢ ( 𝑆 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) = ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 9 | ssun2 | ⊢ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 10 | eqss | ⊢ ( ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) = ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ∧ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) | |
| 11 | 9 10 | mpbiran2 | ⊢ ( ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) = ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 12 | 8 11 | bitri | ⊢ ( 𝑆 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 13 | 7 12 | bitr4di | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑆 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 14 | 3 13 | bitr2d | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
| 15 | eqid | ⊢ ( 𝐽 ↾t 𝑆 ) = ( 𝐽 ↾t 𝑆 ) | |
| 16 | 1 15 | restperf | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Perf ↔ 𝑆 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 17 | 4 16 | sylan | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Perf ↔ 𝑆 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 18 | 1 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 19 | eqid | ⊢ ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 20 | 1 19 | restperf | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) → ( ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ Perf ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
| 21 | 18 20 | syldan | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ Perf ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
| 22 | 4 21 | sylan | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ Perf ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( limPt ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
| 23 | 14 17 22 | 3bitr4d | ⊢ ( ( 𝐽 ∈ Fre ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Perf ↔ ( 𝐽 ↾t ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ Perf ) ) |