This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of a subset of a topological space is the subset together with its limit points. Theorem 6.6 of Munkres p. 97. (Contributed by NM, 26-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | clslp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | neindisj | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ) → ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) |
| 3 | 2 | expr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) → ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) ) |
| 4 | 3 | adantr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ¬ 𝑥 ∈ 𝑆 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) → ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) ) |
| 5 | difsn | ⊢ ( ¬ 𝑥 ∈ 𝑆 → ( 𝑆 ∖ { 𝑥 } ) = 𝑆 ) | |
| 6 | 5 | ineq2d | ⊢ ( ¬ 𝑥 ∈ 𝑆 → ( 𝑛 ∩ ( 𝑆 ∖ { 𝑥 } ) ) = ( 𝑛 ∩ 𝑆 ) ) |
| 7 | 6 | neeq1d | ⊢ ( ¬ 𝑥 ∈ 𝑆 → ( ( 𝑛 ∩ ( 𝑆 ∖ { 𝑥 } ) ) ≠ ∅ ↔ ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) ) |
| 8 | 7 | adantl | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ¬ 𝑥 ∈ 𝑆 ) → ( ( 𝑛 ∩ ( 𝑆 ∖ { 𝑥 } ) ) ≠ ∅ ↔ ( 𝑛 ∩ 𝑆 ) ≠ ∅ ) ) |
| 9 | 4 8 | sylibrd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ¬ 𝑥 ∈ 𝑆 ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) → ( 𝑛 ∩ ( 𝑆 ∖ { 𝑥 } ) ) ≠ ∅ ) ) |
| 10 | 9 | ex | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ¬ 𝑥 ∈ 𝑆 → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) → ( 𝑛 ∩ ( 𝑆 ∖ { 𝑥 } ) ) ≠ ∅ ) ) ) |
| 11 | 10 | ralrimdv | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ¬ 𝑥 ∈ 𝑆 → ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑛 ∩ ( 𝑆 ∖ { 𝑥 } ) ) ≠ ∅ ) ) |
| 12 | simpll | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝐽 ∈ Top ) | |
| 13 | simplr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ 𝑋 ) | |
| 14 | 1 | clsss3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 15 | 14 | sselda | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑥 ∈ 𝑋 ) |
| 16 | 1 | islp2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑛 ∩ ( 𝑆 ∖ { 𝑥 } ) ) ≠ ∅ ) ) |
| 17 | 12 13 15 16 | syl3anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑛 ∩ ( 𝑆 ∖ { 𝑥 } ) ) ≠ ∅ ) ) |
| 18 | 11 17 | sylibrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ¬ 𝑥 ∈ 𝑆 → 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 19 | 18 | orrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑥 ∈ 𝑆 ∨ 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 20 | elun | ⊢ ( 𝑥 ∈ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( 𝑥 ∈ 𝑆 ∨ 𝑥 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) | |
| 21 | 19 20 | sylibr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑥 ∈ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 22 | 21 | ex | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → 𝑥 ∈ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
| 23 | 22 | ssrdv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 24 | 1 | sscls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 25 | 1 | lpsscls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 26 | 24 25 | unssd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 27 | 23 26 | eqssd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝑆 ∪ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |