This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a perfect space is perfect iff its closure is perfect (and the closure is an actual perfect set, since it is both closed and perfect in the subspace topology). (Contributed by Mario Carneiro, 26-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpcls.1 | |- X = U. J |
|
| Assertion | perfcls | |- ( ( J e. Fre /\ S C_ X ) -> ( ( J |`t S ) e. Perf <-> ( J |`t ( ( cls ` J ) ` S ) ) e. Perf ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpcls.1 | |- X = U. J |
|
| 2 | 1 | lpcls | |- ( ( J e. Fre /\ S C_ X ) -> ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) = ( ( limPt ` J ) ` S ) ) |
| 3 | 2 | sseq2d | |- ( ( J e. Fre /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) C_ ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) <-> ( ( cls ` J ) ` S ) C_ ( ( limPt ` J ) ` S ) ) ) |
| 4 | t1top | |- ( J e. Fre -> J e. Top ) |
|
| 5 | 1 | clslp | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( S u. ( ( limPt ` J ) ` S ) ) ) |
| 6 | 4 5 | sylan | |- ( ( J e. Fre /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( S u. ( ( limPt ` J ) ` S ) ) ) |
| 7 | 6 | sseq1d | |- ( ( J e. Fre /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) C_ ( ( limPt ` J ) ` S ) <-> ( S u. ( ( limPt ` J ) ` S ) ) C_ ( ( limPt ` J ) ` S ) ) ) |
| 8 | ssequn1 | |- ( S C_ ( ( limPt ` J ) ` S ) <-> ( S u. ( ( limPt ` J ) ` S ) ) = ( ( limPt ` J ) ` S ) ) |
|
| 9 | ssun2 | |- ( ( limPt ` J ) ` S ) C_ ( S u. ( ( limPt ` J ) ` S ) ) |
|
| 10 | eqss | |- ( ( S u. ( ( limPt ` J ) ` S ) ) = ( ( limPt ` J ) ` S ) <-> ( ( S u. ( ( limPt ` J ) ` S ) ) C_ ( ( limPt ` J ) ` S ) /\ ( ( limPt ` J ) ` S ) C_ ( S u. ( ( limPt ` J ) ` S ) ) ) ) |
|
| 11 | 9 10 | mpbiran2 | |- ( ( S u. ( ( limPt ` J ) ` S ) ) = ( ( limPt ` J ) ` S ) <-> ( S u. ( ( limPt ` J ) ` S ) ) C_ ( ( limPt ` J ) ` S ) ) |
| 12 | 8 11 | bitri | |- ( S C_ ( ( limPt ` J ) ` S ) <-> ( S u. ( ( limPt ` J ) ` S ) ) C_ ( ( limPt ` J ) ` S ) ) |
| 13 | 7 12 | bitr4di | |- ( ( J e. Fre /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) C_ ( ( limPt ` J ) ` S ) <-> S C_ ( ( limPt ` J ) ` S ) ) ) |
| 14 | 3 13 | bitr2d | |- ( ( J e. Fre /\ S C_ X ) -> ( S C_ ( ( limPt ` J ) ` S ) <-> ( ( cls ` J ) ` S ) C_ ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) ) ) |
| 15 | eqid | |- ( J |`t S ) = ( J |`t S ) |
|
| 16 | 1 15 | restperf | |- ( ( J e. Top /\ S C_ X ) -> ( ( J |`t S ) e. Perf <-> S C_ ( ( limPt ` J ) ` S ) ) ) |
| 17 | 4 16 | sylan | |- ( ( J e. Fre /\ S C_ X ) -> ( ( J |`t S ) e. Perf <-> S C_ ( ( limPt ` J ) ` S ) ) ) |
| 18 | 1 | clsss3 | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
| 19 | eqid | |- ( J |`t ( ( cls ` J ) ` S ) ) = ( J |`t ( ( cls ` J ) ` S ) ) |
|
| 20 | 1 19 | restperf | |- ( ( J e. Top /\ ( ( cls ` J ) ` S ) C_ X ) -> ( ( J |`t ( ( cls ` J ) ` S ) ) e. Perf <-> ( ( cls ` J ) ` S ) C_ ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) ) ) |
| 21 | 18 20 | syldan | |- ( ( J e. Top /\ S C_ X ) -> ( ( J |`t ( ( cls ` J ) ` S ) ) e. Perf <-> ( ( cls ` J ) ` S ) C_ ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) ) ) |
| 22 | 4 21 | sylan | |- ( ( J e. Fre /\ S C_ X ) -> ( ( J |`t ( ( cls ` J ) ` S ) ) e. Perf <-> ( ( cls ` J ) ` S ) C_ ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) ) ) |
| 23 | 14 17 22 | 3bitr4d | |- ( ( J e. Fre /\ S C_ X ) -> ( ( J |`t S ) e. Perf <-> ( J |`t ( ( cls ` J ) ` S ) ) e. Perf ) ) |